1
- Package: loo
2
1
Type: Package
3
- Title: Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian Models
2
+ Package: loo
3
+ Title: Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian
4
+ Models
4
5
Version: 2.8.0.9000
5
6
Date: 2024-07-03
6
- Authors@R: c(person("Aki", "Vehtari", email = "Aki.Vehtari@aalto.fi", role = c("aut")),
7
- person("Jonah", "Gabry", email = "jsg2201@columbia.edu", role = c("cre", "aut")),
8
- person("Måns", "Magnusson", role = c("aut")),
9
- person("Yuling", "Yao", role = c("aut")),
10
- person("Paul-Christian", "Bürkner", role = c("aut")),
11
- person("Topi", "Paananen", role = c("aut")),
12
- person("Andrew", "Gelman", role = c("aut")),
13
- person("Ben", "Goodrich", role = c("ctb")),
14
- person("Juho", "Piironen", role = c("ctb")),
15
- person("Bruno", "Nicenboim", role = c("ctb")),
16
- person("Leevi", "Lindgren", role = c("ctb")))
7
+ Authors@R: c(
8
+ person("Aki", "Vehtari", , "Aki.Vehtari@aalto.fi", role = "aut"),
9
+ person("Jonah", "Gabry", , "jsg2201@columbia.edu", role = c("cre", "aut")),
10
+ person("Måns", "Magnusson", role = "aut"),
11
+ person("Yuling", "Yao", role = "aut"),
12
+ person("Paul-Christian", "Bürkner", role = "aut"),
13
+ person("Topi", "Paananen", role = "aut"),
14
+ person("Andrew", "Gelman", role = "aut"),
15
+ person("Ben", "Goodrich", role = "ctb"),
16
+ person("Juho", "Piironen", role = "ctb"),
17
+ person("Bruno", "Nicenboim", role = "ctb"),
18
+ person("Leevi", "Lindgren", role = "ctb")
19
+ )
17
20
Maintainer: Jonah Gabry <jsg2201@columbia.edu>
18
- URL: https://mc-stan.org/loo/, https://discourse.mc-stan.org
19
- BugReports: https://github.com/stan-dev/loo/issues
20
21
Description: Efficient approximate leave-one-out cross-validation (LOO)
21
- for Bayesian models fit using Markov chain Monte Carlo, as
22
- described in Vehtari, Gelman, and Gabry (2017)
23
- <doi:10.1007/s11222-016-9696-4>.
24
- The approximation uses Pareto smoothed importance sampling (PSIS),
25
- a new procedure for regularizing importance weights.
26
- As a byproduct of the calculations, we also obtain approximate
27
- standard errors for estimated predictive errors and for the comparison
28
- of predictive errors between models. The package also provides methods
29
- for using stacking and other model weighting techniques to average
30
- Bayesian predictive distributions.
22
+ for Bayesian models fit using Markov chain Monte Carlo, as described
23
+ in Vehtari, Gelman, and Gabry (2017) <doi:10.1007/s11222-016-9696-4>.
24
+ The approximation uses Pareto smoothed importance sampling (PSIS), a
25
+ new procedure for regularizing importance weights. As a byproduct of
26
+ the calculations, we also obtain approximate standard errors for
27
+ estimated predictive errors and for the comparison of predictive
28
+ errors between models. The package also provides methods for using
29
+ stacking and other model weighting techniques to average Bayesian
30
+ predictive distributions.
31
31
License: GPL (>=3)
32
- LazyData: TRUE
32
+ URL: https://mc-stan.org/loo/, https://discourse.mc-stan.org
33
+ BugReports: https://github.com/stan-dev/loo/issues
33
34
Depends:
34
35
R (>= 3.1.2)
35
36
Imports:
@@ -50,9 +51,13 @@ Suggests:
50
51
rstantools,
51
52
spdep,
52
53
testthat (>= 2.1.0)
54
+ VignetteBuilder:
55
+ knitr
53
56
Config/testthat/edition: 3
54
- VignetteBuilder: knitr
57
+ Config/testthat/parallel: true
58
+ Config/testthat/start-first: loo_subsampling_cases, loo_subsampling
55
59
Encoding: UTF-8
56
- SystemRequirements: pandoc (>= 1.12.3), pandoc-citeproc
57
- RoxygenNote: 7.3.2
60
+ LazyData: TRUE
58
61
Roxygen: list(markdown = TRUE)
62
+ RoxygenNote: 7.3.2
63
+ SystemRequirements: pandoc (>= 1.12.3), pandoc-citeproc
0 commit comments