-
Notifications
You must be signed in to change notification settings - Fork 42
Open
Description
One measure of how difficult a posterior is, is the number of dimensions,
For example posterior_database/posteriors/GLM_Poisson_Data-GLM_Poisson_model.json
reports "dimensions",
{
"keywords": ["bpa book", "Poisson model"],
"urls": "https://github.com/stan-dev/example-models/tree/master/BPA/Ch.03",
"references": "kery2011population",
"dimensions": {
"alpha": 1,
"beta1": 1,
"beta2": 1,
"beta3": 1,
"log_lambda": 40,
"lambda": 40
},
"reference_posterior_name": null,
"added_date": "2021-07-01",
"added_by": "Kane Lindsay",
"name": "GLM_Poisson_Data-GLM_Poisson_model",
"model_name": "GLM_Poisson_model",
"data_name": "GLM_Poisson_Data"
}
but looking at the code, these "dimensions" include transformed parameters
and generated quantities
which have high dimensions, but not influence how difficult the posterior is
parameters {
real<lower=-20, upper=20> alpha;
real<lower=-10, upper=10> beta1;
real<lower=-10, upper=10> beta2;
real<lower=-10, upper=10> beta3;
}
transformed parameters {
vector[n] log_lambda;
log_lambda = alpha + beta1 * year + beta2 * year_squared
+ beta3 * year_cubed;
}
generated quantities {
vector[n] lambda;
lambda = exp(log_lambda);
}
It would be good to report the actual posterior dimensionality.
Metadata
Metadata
Assignees
Labels
No labels