Skip to content

Store the actual posterior dimension #294

@avehtari

Description

@avehtari

One measure of how difficult a posterior is, is the number of dimensions,
For example posterior_database/posteriors/GLM_Poisson_Data-GLM_Poisson_model.json reports "dimensions",

{
  "keywords": ["bpa book", "Poisson model"],
  "urls": "https://github.com/stan-dev/example-models/tree/master/BPA/Ch.03",
  "references": "kery2011population",
  "dimensions": {
    "alpha": 1,
    "beta1": 1,
    "beta2": 1,
    "beta3": 1,
    "log_lambda": 40,
    "lambda": 40
  },
  "reference_posterior_name": null,
  "added_date": "2021-07-01",
  "added_by": "Kane Lindsay",
  "name": "GLM_Poisson_Data-GLM_Poisson_model",
  "model_name": "GLM_Poisson_model",
  "data_name": "GLM_Poisson_Data"
}

but looking at the code, these "dimensions" include transformed parameters and generated quantities which have high dimensions, but not influence how difficult the posterior is

parameters {
  real<lower=-20, upper=20> alpha;
  real<lower=-10, upper=10> beta1;
  real<lower=-10, upper=10> beta2;
  real<lower=-10, upper=10> beta3;
}
transformed parameters {
  vector[n] log_lambda;
  
  log_lambda = alpha + beta1 * year + beta2 * year_squared
               + beta3 * year_cubed;
}
generated quantities {
  vector[n] lambda;
  
  lambda = exp(log_lambda);
}

It would be good to report the actual posterior dimensionality.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions