You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: .github/PULL_REQUEST_TEMPLATE.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -2,6 +2,6 @@
2
2
3
3
We are excited about your pull request, but unfortunately we are not accepting pull requests against this repository, as all development happens on the [main project repository](https://github.com/stdlib-js/stdlib). We kindly request that you submit this pull request against the [respective directory](https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/repl) of the main repository where we’ll review and provide feedback.
4
4
5
-
If this is your first stdlib contribution, be sure to read the [contributing guide](https://github.com/stdlib-js/stdlib/blob/develop/CONTRIBUTING.md) which provides guidelines and instructions for submitting contributions. You may also consult the [development guide](https://github.com/stdlib-js/stdlib/blob/develop/docs/development.md) for help on developing stdlib.
5
+
If this is your first stdlib contribution, be sure to read the [contributing guide](https://github.com/stdlib-js/stdlib/blob/develop/CONTRIBUTING.md) which provides guidelines and instructions for submitting contributions. You may also consult the [development guide](https://github.com/stdlib-js/stdlib/blob/develop/docs/contributing/development.md) for help on developing stdlib.
6
6
7
7
We look forward to receiving your contribution! :smiley:
base.strided.dnanvariance.ndarray,"\nbase.strided.dnanvariance.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using alternative indexing semantics.\n"
1879
1879
base.strided.dnanvariancech,"\nbase.strided.dnanvariancech( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass trial mean algorithm.\n"
1880
1880
base.strided.dnanvariancech.ndarray,"\nbase.strided.dnanvariancech.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass trial mean algorithm and\n alternative indexing semantics.\n"
1881
-
base.strided.dnanvariancepn,"\nbase.strided.dnanvariancepn( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a two-pass algorithm.\n"
1882
-
base.strided.dnanvariancepn.ndarray,"\nbase.strided.dnanvariancepn.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a two-pass algorithm and alternative\n indexing semantics.\n"
1881
+
base.strided.dnanvariancepn,"\nbase.strided.dnanvariancepn( N:integer, correction:number, x:Float64Array, \n strideX:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a two-pass algorithm.\n"
1882
+
base.strided.dnanvariancepn.ndarray,"\nbase.strided.dnanvariancepn.ndarray( N:integer, correction:number, \n x:Float64Array, strideX:integer, offsetX:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a two-pass algorithm and alternative\n indexing semantics.\n"
1883
1883
base.strided.dnanvariancetk,"\nbase.strided.dnanvariancetk( N:integer, correction:number, x:Float64Array, \n strideX:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass textbook algorithm.\n"
1884
1884
base.strided.dnanvariancetk.ndarray,"\nbase.strided.dnanvariancetk.ndarray( N:integer, correction:number, \n x:Float64Array, strideX:integer, offsetX:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass textbook algorithm and\n alternative indexing semantics.\n"
1885
-
base.strided.dnanvariancewd,"\nbase.strided.dnanvariancewd( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using Welford's algorithm.\n"
1886
-
base.strided.dnanvariancewd.ndarray,"\nbase.strided.dnanvariancewd.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using Welford's algorithm and alternative indexing\n semantics.\n"
1887
-
base.strided.dnanvarianceyc,"\nbase.strided.dnanvarianceyc( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and\n Cramer.\n"
1888
-
base.strided.dnanvarianceyc.ndarray,"\nbase.strided.dnanvarianceyc.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and\n Cramer and alternative indexing semantics.\n"
1885
+
base.strided.dnanvariancewd,"\nbase.strided.dnanvariancewd( N:integer, correction:number, x:Float64Array, \n strideX:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using Welford's algorithm.\n"
1886
+
base.strided.dnanvariancewd.ndarray,"\nbase.strided.dnanvariancewd.ndarray( N:integer, correction:number, \n x:Float64Array, strideX:integer, offsetX:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using Welford's algorithm and alternative indexing\n semantics.\n"
1887
+
base.strided.dnanvarianceyc,"\nbase.strided.dnanvarianceyc( N:integer, correction:number, x:Float64Array, \n strideX:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and\n Cramer.\n"
1888
+
base.strided.dnanvarianceyc.ndarray,"\nbase.strided.dnanvarianceyc.ndarray( N:integer, correction:number, \n x:Float64Array, strideX:integer, offsetX:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and\n Cramer and alternative indexing semantics.\n"
1889
1889
base.strided.dnrm2,"\nbase.strided.dnrm2( N:integer, x:Float64Array, stride:integer )\n Computes the L2-norm of a double-precision floating-point vector.\n"
1890
1890
base.strided.dnrm2.ndarray,"\nbase.strided.dnrm2.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the L2-norm of a double-precision floating-point vector using\n alternative indexing semantics.\n"
1891
1891
base.strided.dramp,"\nbase.strided.dramp( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Evaluates the ramp function for each element in a double-precision floating-\n point strided array `x` and assigns the results to elements in a double-\n precision floating-point strided array `y`.\n"
0 commit comments