|
31 | 31 |
|
32 | 32 | ## 常用操作
|
33 | 33 |
|
| 34 | +*由于顺序表的实现基于数组,且在形式上没有更加复杂的结构,若无特殊说明,下文中提到的"数组"基本就是指代"顺序表"。* |
| 35 | + |
34 | 36 | ### 初始化
|
35 | 37 |
|
| 38 | +数组的初始化分为**无初始值**与**给定初始值**两种方式。在未指定初始值的情况下,大多数编程语言会将数组元素的值初始化为 $0$。 |
| 39 | + |
| 40 | +### 访问元素 |
| 41 | + |
| 42 | +数组元素的存储基于连续的内存空间,这意味着寻址会非常容易——只需记录数组中的首个元素的地址,其余元素的地址均可通过它们与首元素的**地址偏移量**得出,这个偏移量就是数组的**元素索引**。 |
| 43 | + |
| 44 | +连续的物理空间存储(这里特指数组,只有数组具有“连续物理空间”这个概念,但这不妨碍数组能够实现顺序表的逻辑结构)使得数组的访问效率极高,==能够在 $O(1)$ 时间内**随机访问**其中的任一元素==: |
| 45 | +```py |
| 46 | +def array_access(nums: list[int]) -> int: |
| 47 | + """随机访问元素""" |
| 48 | + random_index = random.randint(0, len(nums) - 1) |
| 49 | + random_num = nums[random_index] |
| 50 | + return random_num |
| 51 | +``` |
| 52 | + |
| 53 | +### 插入元素 |
| 54 | + |
| 55 | +由于数组元素储存的连续性,元素与元素之间没有可以用于存放数据的余地,因此,==想要在数组中插入一个元素,就需要将该元素后的所有元素都**向后移动一位**,然后再重新分配元素索引==: |
| 56 | + |
| 57 | + |
| 58 | +*图片来源:[数组-插入元素 | Hello 算法](https://www.hello-algo.com/chapter_array_and_linkedlist/array/#3)* |
| 59 | + |
| 60 | +```py |
| 61 | +def array_insert(nums: list[int], num: int, index: int) -> None: |
| 62 | + """将 num 插入 nums 的 index 处""" |
| 63 | + for i in range(len(nums) - 1, index, -1): |
| 64 | + # 从右往左向后移动数组元素,搬运区间 [index + 1, len(nums) - 1] |
| 65 | + nums[i] = nums[i - 1] |
| 66 | + nums[index] = num |
| 67 | +``` |
| 68 | + |
| 69 | +有一点需要注意的是,==在定长数组中==,这样的不加修饰的插入算法会导致最后一个元素在插入后**溢出**,从而丢失数据,解决的方法是在移动元素前先对原数组执行**扩容操作**: |
| 70 | +```py |
| 71 | +def array_insert_improve(nums: list[int], num: int, index: int) -> None: |
| 72 | + """将 num 插入 nums 的 index 处,插入前执行扩容操作""" |
| 73 | + if index < 0 or index > len(nums): |
| 74 | + raise IndexError("Index out of range") |
| 75 | + nums.append(0) # 先扩一位 |
| 76 | + for i in range(len(nums) - 1, index, -1): |
| 77 | + # 从右往左向后移动数组元素,搬运区间 [index + 1, len(nums) - 1] |
| 78 | + nums[i] = nums[i - 1] |
| 79 | + nums[index] = num |
| 80 | +``` |
| 81 | +??? success "可视化运行" |
| 82 | + <iframe width="800" height="500" frameborder="0" src="https://pythontutor.com/iframe-embed.html#code=def%20array_insert_improve%28nums%3A%20list%5Bint%5D,%20num%3A%20int,%20index%3A%20int%29%20-%3E%20None%3A%0A%20%20%20%20%22%22%22%E5%B0%86%20num%20%E6%8F%92%E5%85%A5%20nums%20%E7%9A%84%20index%20%E5%A4%84%EF%BC%8C%E6%8F%92%E5%85%A5%E5%89%8D%E6%89%A7%E8%A1%8C%E6%89%A9%E5%AE%B9%E6%93%8D%E4%BD%9C%22%22%22%0A%20%20%20%20if%20index%20%3C%200%20or%20index%20%3E%20len%28nums%29%3A%0A%20%20%20%20%20%20%20%20raise%20IndexError%28%22Index%20out%20of%20range%22%29%0A%20%20%20%20nums.append%280%29%20%20%23%20%E5%85%88%E6%89%A9%E4%B8%80%E4%BD%8D%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%20-%201,%20index,%20-1%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E4%BB%8E%E5%8F%B3%E5%BE%80%E5%B7%A6%E5%90%91%E5%90%8E%E7%A7%BB%E5%8A%A8%E6%95%B0%E7%BB%84%E5%85%83%E7%B4%A0%EF%BC%8C%E6%90%AC%E8%BF%90%E5%8C%BA%E9%97%B4%20%5Bindex%20%2B%201,%20len%28nums%29%20-%201%5D%0A%20%20%20%20%20%20%20%20nums%5Bi%5D%20%3D%20nums%5Bi%20-%201%5D%0A%20%20%20%20nums%5Bindex%5D%20%3D%20num%0A%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20arr%20%3D%20%5B1,%202,%204,%205%5D%0A%20%20%20%20array_insert_improve%28arr,%203,%202%29&codeDivHeight=400&codeDivWidth=350&cumulative=false&curInstr=0&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe> |
| 83 | + |
| 84 | + [全屏查看>>>](https://pythontutor.com/render.html#code=def%20array_insert_improve%28nums%3A%20list%5Bint%5D,%20num%3A%20int,%20index%3A%20int%29%20-%3E%20None%3A%0A%20%20%20%20%22%22%22%E5%B0%86%20num%20%E6%8F%92%E5%85%A5%20nums%20%E7%9A%84%20index%20%E5%A4%84%EF%BC%8C%E6%8F%92%E5%85%A5%E5%89%8D%E6%89%A7%E8%A1%8C%E6%89%A9%E5%AE%B9%E6%93%8D%E4%BD%9C%22%22%22%0A%20%20%20%20if%20index%20%3C%200%20or%20index%20%3E%20len%28nums%29%3A%0A%20%20%20%20%20%20%20%20raise%20IndexError%28%22Index%20out%20of%20range%22%29%0A%20%20%20%20nums.append%280%29%20%20%23%20%E5%85%88%E6%89%A9%E4%B8%80%E4%BD%8D%0A%20%20%20%20for%20i%20in%20range%28len%28nums%29%20-%201,%20index,%20-1%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E4%BB%8E%E5%8F%B3%E5%BE%80%E5%B7%A6%E5%90%91%E5%90%8E%E7%A7%BB%E5%8A%A8%E6%95%B0%E7%BB%84%E5%85%83%E7%B4%A0%EF%BC%8C%E6%90%AC%E8%BF%90%E5%8C%BA%E9%97%B4%20%5Bindex%20%2B%201,%20len%28nums%29%20-%201%5D%0A%20%20%20%20%20%20%20%20nums%5Bi%5D%20%3D%20nums%5Bi%20-%201%5D%0A%20%20%20%20nums%5Bindex%5D%20%3D%20num%0A%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20arr%20%3D%20%5B1,%202,%204,%205%5D%0A%20%20%20%20array_insert_improve%28arr,%203,%202%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false) |
| 85 | + |
| 86 | +### 删除元素 |
| 87 | + |
| 88 | +与插入同理,删除元素就需要将待删除元素后的所有元素都**向前移动一位**: |
| 89 | + |
| 90 | +*图片来源:[数组-删除元素 | Hello 算法](https://www.hello-algo.com/chapter_array_and_linkedlist/array/#4)* |
| 91 | + |
| 92 | +```py |
| 93 | +def array_remove(nums: list[int], index: int) -> None: |
| 94 | + """删除 nums 中 索引为 index 的元素(元素左移覆盖待删除元素)""" |
| 95 | + for i in range(index, len(nums) - 1): |
| 96 | + # 从左往右移动数组元素,搬运区间为 [index + 1, len(nums)] |
| 97 | + nums[i] = nums[i + 1] |
| 98 | +``` |
| 99 | + |
| 100 | +同样的,这段原始算法在不加以修饰的情况下有一个比较明显的问题,就是由于数组长度并未缩短,删除操作后会导致最后一个元素的冗余。解决方法也很简单——直接移除最后一个元素即可: |
| 101 | + |
| 102 | +!!! note |
| 103 | + 若在“定长数组”模型中,通常保留长度不变并只左移,尾部可填充哨兵值。 |
| 104 | +```py |
| 105 | +def array_remove_improve(nums: list[int], index: int) -> None: |
| 106 | + """删除 nums 中 索引为 index 的元素""" |
| 107 | + if index < 0 or index >= len(nums): |
| 108 | + raise IndexError("Index out of range") |
| 109 | + for i in range(index, len(nums) - 1): |
| 110 | + # 从左往右移动数组元素,搬运区间为 [index + 1, len(nums)] |
| 111 | + nums[i] = nums[i + 1] |
| 112 | + nums.pop() |
| 113 | +``` |
| 114 | +??? success "可视化运行" |
| 115 | + <iframe width="800" height="500" frameborder="0" src="https://pythontutor.com/iframe-embed.html#code=def%20array_remove_improve%28nums%3A%20list%5Bint%5D,%20index%3A%20int%29%20-%3E%20None%3A%0A%20%20%20%20%22%22%22%E5%88%A0%E9%99%A4%20nums%20%E4%B8%AD%20%E7%B4%A2%E5%BC%95%E4%B8%BA%20index%20%E7%9A%84%E5%85%83%E7%B4%A0%22%22%22%0A%20%20%20%20if%20index%20%3C%200%20or%20index%20%3E%3D%20len%28nums%29%3A%0A%20%20%20%20%20%20%20%20raise%20IndexError%28%22Index%20out%20of%20range%22%29%0A%20%20%20%20for%20i%20in%20range%28index,%20len%28nums%29%20-%201%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E4%BB%8E%E5%B7%A6%E5%BE%80%E5%8F%B3%E7%A7%BB%E5%8A%A8%E6%95%B0%E7%BB%84%E5%85%83%E7%B4%A0%EF%BC%8C%E6%90%AC%E8%BF%90%E5%8C%BA%E9%97%B4%E4%B8%BA%20%5Bindex%20%2B%201,%20len%28nums%29%5D%0A%20%20%20%20%20%20%20%20nums%5Bi%5D%20%3D%20nums%5Bi%20%2B%201%5D%0A%20%20%20%20nums.pop%28%29%0A%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20arr%20%3D%20%5B1,%202,%203,%204,%205%5D%0A%20%20%20%20array_remove_improve%28arr,%202%29&codeDivHeight=400&codeDivWidth=350&cumulative=false&curInstr=0&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe> |
| 116 | + |
| 117 | + [全屏查看>>>](https://pythontutor.com/render.html#code=def%20array_remove_improve%28nums%3A%20list%5Bint%5D,%20index%3A%20int%29%20-%3E%20None%3A%0A%20%20%20%20%22%22%22%E5%88%A0%E9%99%A4%20nums%20%E4%B8%AD%20%E7%B4%A2%E5%BC%95%E4%B8%BA%20index%20%E7%9A%84%E5%85%83%E7%B4%A0%22%22%22%0A%20%20%20%20if%20index%20%3C%200%20or%20index%20%3E%3D%20len%28nums%29%3A%0A%20%20%20%20%20%20%20%20raise%20IndexError%28%22Index%20out%20of%20range%22%29%0A%20%20%20%20for%20i%20in%20range%28index,%20len%28nums%29%20-%201%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E4%BB%8E%E5%B7%A6%E5%BE%80%E5%8F%B3%E7%A7%BB%E5%8A%A8%E6%95%B0%E7%BB%84%E5%85%83%E7%B4%A0%EF%BC%8C%E6%90%AC%E8%BF%90%E5%8C%BA%E9%97%B4%E4%B8%BA%20%5Bindex%20%2B%201,%20len%28nums%29%5D%0A%20%20%20%20%20%20%20%20nums%5Bi%5D%20%3D%20nums%5Bi%20%2B%201%5D%0A%20%20%20%20nums.pop%28%29%0A%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20arr%20%3D%20%5B1,%202,%203,%204,%205%5D%0A%20%20%20%20array_remove_improve%28arr,%202%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false) |
| 118 | + |
| 119 | +### 遍历 |
| 120 | + |
| 121 | +顺序表的的遍历通常通过**循环结构**实现。根据不同编程语言的封装,通常有**索引遍历**与**对象迭代遍历(直接遍历)**两种方式: |
| 122 | +```py |
| 123 | +def traversal_index(nums: list[int]) -> int: |
| 124 | + """通过索引遍历数组元素,并求和""" |
| 125 | + count = 0 |
| 126 | + for i in range(len(nums)): |
| 127 | + count += nums[i] |
| 128 | + return count |
| 129 | + |
| 130 | +def traversal_object(nums: list[int]) -> int: |
| 131 | + """直接对可迭代封装进行迭代遍历,并求和""" |
| 132 | + count = 0 |
| 133 | + for num in nums: |
| 134 | + count += num |
| 135 | + return count |
| 136 | + |
| 137 | +def traversal_enumerate(nums: list[int]) -> list[int]: |
| 138 | + """同时遍历数据索引与元素,并数组元素求和""" |
| 139 | + count = 0 |
| 140 | + sum = 0 |
| 141 | + for i, num in enumerate(nums): |
| 142 | + count += nums[i] |
| 143 | + sum += num |
| 144 | + return [count, sum] |
| 145 | +``` |
| 146 | + |
| 147 | +### 查找元素 |
| 148 | + |
| 149 | +在数组中查找元素需要遍历数组元素,在遍历过程中匹配待查找元素,若匹配则返回对应索引,即**线性查找**: |
| 150 | +```py |
| 151 | +def linear_search(nums: list[int], target: int): |
| 152 | + for i in range(len(nums)): |
| 153 | + if nums[i] == target: |
| 154 | + return i |
| 155 | + raise ValueError("Target not Found") |
| 156 | +``` |
| 157 | +线性查找的时间复杂度为 $O(n - i)$,最坏情况下为 $O(n)$,即始终为匹配到待查找元素。 |
| 158 | + |
| 159 | +### 扩容 |
| 160 | + |
| 161 | +为保证程序安全性,避免溢出问题,绝大多数编程语言封装的数组无法直接进行任意扩容,即长度不可变。 |
| 162 | + |
| 163 | +基于这种“定长数组”模型而实现的顺序表,想要实现扩容,就只能新建一个更大的数组,然后将原数组的元素逐一复制过去: |
| 164 | +```py |
| 165 | +def array_extend(nums: list[int], enlarge: int) -> list[int]: |
| 166 | + """将 nums 的长度扩展 enlarge 个单位 |
| 167 | + """ |
| 168 | + # 初始化目标数组 |
| 169 | + res = [0] * (len(nums) + enlarge) |
| 170 | + for i in range (len(nums)): |
| 171 | + # 复制原数组元素 |
| 172 | + res[i] = nums[i] |
| 173 | + return res |
| 174 | +``` |
| 175 | + |
| 176 | +整个扩展过程的操作时间主要消耗在逐一复制数组元素过程上,相当于遍历原有数组,时间复制为 $O(n)$。 |
| 177 | + |
| 178 | +## 顺序表的优缺点 |
| 179 | + |
36 | 180 | <div style="text-align: center;">
|
37 | 181 | 🚧前方施工中🚧
|
38 | 182 | </div>
|
0 commit comments