@@ -21,15 +21,15 @@ model = JLBoostClassifier()
21
21
22
22
````
23
23
JLBoostClassifier(
24
- loss = LogitLogLoss(),
24
+ loss = JLBoost. LogitLogLoss(),
25
25
nrounds = 1,
26
26
subsample = 1.0,
27
27
eta = 1.0,
28
28
max_depth = 6,
29
29
min_child_weight = 1.0,
30
30
lambda = 0.0,
31
31
gamma = 0.0,
32
- colsample_bytree = 1) @810
32
+ colsample_bytree = 1) @087
33
33
````
34
34
35
35
@@ -47,11 +47,11 @@ mljmachine = machine(model, X, y)
47
47
48
48
49
49
````
50
- Machine{JLBoostClassifier} @772 trained 0 times.
50
+ Machine{JLBoostClassifier} @730 trained 0 times.
51
51
args:
52
- 1: Source @097 ⏎ `ScientificTypes.Table{AbstractArray{ScientificTypes.C
52
+ 1: Source @910 ⏎ `ScientificTypes.Table{AbstractArray{ScientificTypes.C
53
53
ontinuous,1}}`
54
- 2: Source @077 ⏎ `AbstractArray{ScientificTypes.Count,1}`
54
+ 2: Source @954 ⏎ `AbstractArray{ScientificTypes.Count,1}`
55
55
````
56
56
57
57
@@ -81,11 +81,11 @@ Choosing a split on SepalLength
81
81
Choosing a split on SepalWidth
82
82
Choosing a split on PetalLength
83
83
Choosing a split on PetalWidth
84
- Machine{JLBoostClassifier} @772 trained 1 time.
84
+ Machine{JLBoostClassifier} @730 trained 1 time.
85
85
args:
86
- 1: Source @097 ⏎ `ScientificTypes.Table{AbstractArray{ScientificTypes.C
86
+ 1: Source @910 ⏎ `ScientificTypes.Table{AbstractArray{ScientificTypes.C
87
87
ontinuous,1}}`
88
- 2: Source @077 ⏎ `AbstractArray{ScientificTypes.Count,1}`
88
+ 2: Source @954 ⏎ `AbstractArray{ScientificTypes.Count,1}`
89
89
````
90
90
91
91
@@ -216,11 +216,11 @@ m = machine(tm, X, y_cate)
216
216
217
217
218
218
````
219
- Machine{ProbabilisticTunedModel{Grid,…}} @388 trained 0 times.
219
+ Machine{ProbabilisticTunedModel{Grid,…}} @109 trained 0 times.
220
220
args:
221
- 1: Source @578 ⏎ `ScientificTypes.Table{AbstractArray{ScientificTypes.C
221
+ 1: Source @664 ⏎ `ScientificTypes.Table{AbstractArray{ScientificTypes.C
222
222
ontinuous,1}}`
223
- 2: Source @226 ⏎ `AbstractArray{ScientificTypes.Multiclass{2},1}`
223
+ 2: Source @788 ⏎ `AbstractArray{ScientificTypes.Multiclass{2},1}`
224
224
````
225
225
226
226
@@ -235,11 +235,11 @@ fit!(m)
235
235
236
236
237
237
````
238
- Machine{ProbabilisticTunedModel{Grid,…}} @388 trained 1 time.
238
+ Machine{ProbabilisticTunedModel{Grid,…}} @109 trained 1 time.
239
239
args:
240
- 1: Source @578 ⏎ `ScientificTypes.Table{AbstractArray{ScientificTypes.C
240
+ 1: Source @664 ⏎ `ScientificTypes.Table{AbstractArray{ScientificTypes.C
241
241
ontinuous,1}}`
242
- 2: Source @226 ⏎ `AbstractArray{ScientificTypes.Multiclass{2},1}`
242
+ 2: Source @788 ⏎ `AbstractArray{ScientificTypes.Multiclass{2},1}`
243
243
````
244
244
245
245
@@ -287,15 +287,15 @@ Choosing a split on SepalLength
287
287
Choosing a split on SepalWidth
288
288
Choosing a split on PetalLength
289
289
Choosing a split on PetalWidth
290
- (fitresult = (treemodel = JLBoostTreeModel(AbstractJLBoostTree[eta = 1.0 (t
291
- ree weight)
290
+ (fitresult = (treemodel = JLBoost.JLBoostTrees. JLBoostTreeModel(JLBoost.JLB
291
+ oostTrees.AbstractJLBoostTree[eta = 1.0 (tree weight)
292
292
293
293
-- PetalLength <= 1.9
294
294
---- weight = 2.0
295
295
296
296
-- PetalLength > 1.9
297
297
---- weight = -2.0
298
- ], LogitLogLoss(), :__y__),
298
+ ], JLBoost. LogitLogLoss(), :__y__),
299
299
target_levels = Bool[0, 1],),
300
300
cache = nothing,
301
301
report = (AUC = 0.16666666666666669,
0 commit comments