Skip to content

Laplacian Eigenmaps

Lars_Hansen edited this page Sep 27, 2022 · 5 revisions

Introduction


Laplacian eigenmaps, are used to reduce the dimensions and extractung the feature to data points. In the aspect of operation efficiency, it avoids the adjacent map to re-build in the entire dataset after the new point arriving, so greatly reducing the computational complexity. Therefore it is often used for facial recognition.

Algorithm


Examples


Sources


Facial recognition

Notes

Faceial recognition

Clone this wiki locally