stochvolmodels package implements pricing analytics and Monte Carlo simulations for valuation of European call and put options and implied volatilities of different stochastic volatility models including Karasinski-Sepp long-normal stochastic volatility model and Heston stochastic volatility model.
📊 Metric | 🔢 Value |
---|---|
PyPI Version | |
Python Versions | |
License |
📊 Metric | 🔢 Value |
---|---|
Total Downloads | |
Monthly | |
Weekly | |
GitHub Stars | |
GitHub Forks |
The StochVol package provides:
- Analytics for Black-Scholes and Normal vols
- Interfaces and implementation for stochastic volatility models, including Karasinski-Sepp log-normal SV model and Heston SV model using analytical method with Fourier transform and Monte Carlo simulations
- Visualization of model implied volatilities
For the analytic implementation of stochastic volatility models, the package provides interfaces for a generic volatility model with the following features.
- Interface for analytical pricing of vanilla options using Fourier transform with closed-form solution for moment generating function
- Interface for Monte-Carlo simulations of model dynamics
Illustrations of using package analytics for research
work is provided in top-level package my_papers
which contains computations and visualisations for several papers
Install using
pip install stochvolmodels
Upgrade using
pip install --upgrade stochvolmodels
Close using
git clone https://github.com/ArturSepp/StochVolModels.git
python >= 3.8
numba >= 0.56.4
numpy >= 1.22.4
scipy >= 1.10
pandas >= 2.2.0
matplotlib >= 3.2.2
seaborn >= 0.12.2
Optional dependencies: qis ">=2.3.1" (for running code in my_papers)
- Model Interface
- Running log-normal SV pricer
- Running Heston SV pricer
- Supporting Illustrations for Public Papers
Running model calibration to sample Bitcoin options data
The package provides interfaces for a generic volatility model with the following features.
- Interface for analytical pricing of vanilla options using Fourier transform with closed-form solution for moment generating function
- Interface for Monte-Carlo simulations of model dynamics
- Interface for visualization of model implied volatilities
The model interface is in stochvolmodels/pricers/model_pricer.py
The analytics for Karasinki-Sepp log-normal stochastic volatility model is based on the paper
Log-normal Stochastic Volatility Model with Quadratic Drift by Artur Sepp and Parviz Rakhmonov
The dynamics of the log-normal stochastic volatility model:
$$d\sigma_{t}=\left(\kappa_{1} + \kappa_{2}\sigma_{t} \right)(\theta - \sigma_{t})dt+ \beta \sigma_{t}dW^{(0)}{t} + \varepsilon \sigma{t} dW^{(1)}_{t}$$
where
Implementation of Lognormal SV model is contained in
stochvolmodels/pricers/logsv_pricer.py
The dynamics of Heston stochastic volatility model:
where
Implementation of Heston SV model is contained in
stochvolmodels/pricers/heston_pricer.py
Basic features are implemented in
examples/run_lognormal_sv_pricer.py
Imports:
import stochvolmodels as sv
from stochvolmodels import LogSVPricer, LogSvParams, OptionChain
# instance of pricer
logsv_pricer = LogSVPricer()
# define model params
params = LogSvParams(sigma0=1.0, theta=1.0, kappa1=5.0, kappa2=5.0, beta=0.2, volvol=2.0)
# 1. compute ne price
model_price, vol = logsv_pricer.price_vanilla(params=params,
ttm=0.25,
forward=1.0,
strike=1.0,
optiontype='C')
print(f"price={model_price:0.4f}, implied vol={vol: 0.2%}")
# 2. prices for slices
model_prices, vols = logsv_pricer.price_slice(params=params,
ttm=0.25,
forward=1.0,
strikes=np.array([0.9, 1.0, 1.1]),
optiontypes=np.array(['P', 'C', 'C']))
print([f"{p:0.4f}, implied vol={v: 0.2%}" for p, v in zip(model_prices, vols)])
# 3. prices for option chain with uniform strikes
option_chain = OptionChain.get_uniform_chain(ttms=np.array([0.083, 0.25]),
ids=np.array(['1m', '3m']),
strikes=np.linspace(0.9, 1.1, 3))
model_prices, vols = logsv_pricer.compute_chain_prices_with_vols(option_chain=option_chain, params=params)
print(model_prices)
print(vols)
btc_option_chain = chains.get_btc_test_chain_data()
params0 = LogSvParams(sigma0=0.8, theta=1.0, kappa1=5.0, kappa2=None, beta=0.15, volvol=2.0)
btc_calibrated_params = logsv_pricer.calibrate_model_params_to_chain(option_chain=btc_option_chain,
params0=params0,
constraints_type=ConstraintsType.INVERSE_MARTINGALE)
print(btc_calibrated_params)
logsv_pricer.plot_model_ivols_vs_bid_ask(option_chain=btc_option_chain,
params=btc_calibrated_params)
btc_option_chain = chains.get_btc_test_chain_data()
uniform_chain_data = OptionChain.to_uniform_strikes(obj=btc_option_chain, num_strikes=31)
btc_calibrated_params = LogSvParams(sigma0=0.8327, theta=1.0139, kappa1=4.8609, kappa2=4.7940, beta=0.1988, volvol=2.3694)
logsv_pricer.plot_comp_mma_inverse_options_with_mc(option_chain=uniform_chain_data,
params=btc_calibrated_params,
nb_path=400000)
All figures shown in the paper can be reproduced using py scripts in
examples/plots_for_paper
Examples are implemented here
examples/run_heston_sv_pricer.py
examples/run_heston.py
Content of run_heston.py
import numpy as np
import matplotlib.pyplot as plt
from stochvolmodels import HestonPricer, HestonParams, OptionChain
# define parameters for bootstrap
params_dict = {'rho=0.0': HestonParams(v0=0.2**2, theta=0.2**2, kappa=4.0, volvol=0.75, rho=0.0),
'rho=-0.4': HestonParams(v0=0.2**2, theta=0.2**2, kappa=4.0, volvol=0.75, rho=-0.4),
'rho=-0.8': HestonParams(v0=0.2**2, theta=0.2**2, kappa=4.0, volvol=0.75, rho=-0.8)}
# get uniform slice
option_chain = OptionChain.get_uniform_chain(ttms=np.array([0.25]), ids=np.array(['3m']), strikes=np.linspace(0.8, 1.15, 20))
option_slice = option_chain.get_slice(id='3m')
# run pricer
pricer = HestonPricer()
pricer.plot_model_slices_in_params(option_slice=option_slice, params_dict=params_dict)
plt.show()
As illustrations of different analytics, this packadge includes module my_papers
with codes for computations and visualisations featured in several papers
for
- "Log-normal Stochastic Volatility Model with Quadratic Drift" by Artur Sepp and Parviz Rakhmonov: https://www.worldscientific.com/doi/10.1142/S0219024924500031
stochvolmodels/my_papers/logsv_model_wtih_quadratic_drift
- "What is a robust stochastic volatility model" by Artur Sepp and Parviz Rakhmonov, SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4647027
stochvolmodels/my_papers/volatility_models
- "Valuation and Hedging of Cryptocurrency Inverse Options" by Artur Sepp and Vladimir Lucic, SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4606748
stochvolmodels/my_papers/inverse_options
- "Unified Approach for Hedging Impermanent Loss of Liquidity Provision" by Artur Sepp, Alexander Lipton and Vladimir Lucic, SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4887298
stochvolmodels/my_papers/il_hedging
- "Stochastic Volatility for Factor Heath-Jarrow-Morton Framework" by Artur Sepp and Parviz Rakhmonov, SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4646925
stochvolmodels/my_papers/sv_for_factor_hjm
StochVolModels/
├── stochvolmodels/
│ ├── pricers/
│ │ ├── model_pricer.py # Generic model interface
│ │ ├── logsv_pricer.py # Log-normal SV implementation
│ │ └── heston_pricer.py # Heston SV implementation
│ ├── data/
│ │ └── option_chain.py # Option chain data structures
│ └── my_papers/ # Research paper implementations
│ ├── logsv_model_with_quadratic_drift/
│ ├── volatility_models/
│ ├── inverse_options/
│ ├── il_hedging/
│ └── sv_for_factor_hjm/
├── examples/
│ ├── run_lognormal_sv_pricer.py
│ ├── run_heston_sv_pricer.py
│ ├── run_heston.py
│ └── plots_for_paper/
└── README.md
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
This project is licensed under the MIT License - see the LICENSE file for details.
If you use this package in your research, please cite the relevant papers:
@misc{sepp2024stochvolmodels,
title={StochVolModels: Python Implementation of Stochastic Volatility Models},
author={Sepp, Artur},
year={2024},
howpublished={\url{https://github.com/ArturSepp/StochVolModels}},
note={Python package for pricing analytics and Monte Carlo simulations}
}
@article{sepprakhmonov2023,
title={Log-normal stochastic volatility model with quadratic drift},
author={Sepp, Artur and Rakhmonov, Parviz},
journal={International Journal of Theoretical and Applied Finance},
volume={26},
number={8},
year={2023},
url={https://www.worldscientific.com/doi/epdf/10.1142/S0219024924500031}
}
@article{sepprakhmonov2023b,
title={What is a robust stochastic volatility model},
author={Sepp, Artur and Rakhmonov, Parviz},
year={2023},
note={Working paper},
url={http://ssrn.com/abstract=4647027}
}
@article{lucicsepp2024,
title={Valuation and hedging of cryptocurrency inverse options},
author={Lucic, Vladimir and Sepp, Artur},
journal={Quantitative Finance},
volume={24},
number={7},
pages={851--869},
year={2024},
url={https://www.tandfonline.com/doi/full/10.1080/14697688.2024.2364804}
}
@article{lucicsepp2024,
title={Valuation and hedging of cryptocurrency inverse options},
author={Lucic, Vladimir and Sepp, Artur},
journal={Quantitative Finance},
volume={24},
number={7},
pages={851--869},
year={2024},
url={https://www.tandfonline.com/doi/full/10.1080/14697688.2024.2364804}
}
@article{sepprakhmonov2024,
title={Stochastic volatility for factor Heath-Jarrow-Morton framework},
author={Sepp, Artur and Rakhmonov, Parviz},
year={2025},
journal={Review of Derivatives Research},
note={Accepted},
url={http://ssrn.com/abstract=4646925}
}
Special thanks to co-authors and collaborators:
- Parviz Rakhmonov
- Vladimir Lucic
- Alexander Lipton
For additional research and advanced analytics, see the companion modules and papers included in this package.
If you use StochVolModels in your research, please cite it as:
@software{stochvolmodels2024,
author={Sepp, Artur},
title={StochVolModels: Python implementation of pricing analytics and Monte Carlo simulations for stochastic volatility models},
year={2024},
url={https://github.com/ArturSepp/StochVolModels},
}