Skip to content

Commit 1d9f2f3

Browse files
committed
finish weak formulation
1 parent 6e2e2c0 commit 1d9f2f3

File tree

1 file changed

+15
-10
lines changed

1 file changed

+15
-10
lines changed

docs/benchmarks/linear elasticity/plate-with-hole.md

Lines changed: 15 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -4,8 +4,7 @@ We consider the case of an infinite plate with a circular hole in the center. Th
44
<!-- include an svg picture here-->
55
![Infinite linear elastic plate with hole](plate-with-hole.svg)
66

7-
The solution is given in polar coordinates. Assume that the infinite plate is loaded in $x$-direction with load $p$, then at
8-
a point with polar coordinates $(r,\theta)\in\mathbb R_+ \times \mathbb R$, the polar stress components are given by
7+
The solution is given in polar stress components at a point with polar coordinates $(r,\theta)\in\mathbb R_+ \times \mathbb R$. Assume that the infinite plate is loaded in $x$-direction with load $p$, then the polar stress components are given by
98

109
$$
1110
\begin{aligned}
@@ -28,13 +27,13 @@ $$
2827
with the full stress tensor solution given by
2928

3029
$$
31-
\boldsymbol\sigma_\mathrm{analytical} (r,\theta)= \begin{bmatrix} \sigma_{xx} & \sigma_{xy}\\ \sigma_{xy} & \sigma_{yy} \end{bmatrix}.
30+
\boldsymbol\sigma_\mathrm{analytical} (r,\theta)= \begin{bmatrix} \sigma_{xx} & \sigma_{xy}\\\ \sigma_{xy} & \sigma_{yy} \end{bmatrix}.
3231
$$
3332

34-
or for a cartesion point $(x,y)$:
33+
or for a cartesion point $(x,y)\in \mathbb R_+^2$:
3534

3635
$$
37-
\boldsymbol\sigma_\mathrm{analytical} (x,y)=\boldsymbol\sigma_\mathrm{analytical} \left(\sqrt{x^2 + y^2},\arccos\frac{x}{\sqrt{x^2+y^2}}\right)
36+
\boldsymbol\sigma_\mathrm{analytical} (x,y)=\boldsymbol\sigma_\mathrm{analytical} \left(\sqrt{x^2 + y^2},\arccos\frac{x}{\sqrt{x^2+y^2}}\right).
3837
$$
3938

4039
In order to transform this into a practical benchmark, we consider a rectangular subdomain
@@ -49,15 +48,21 @@ $$
4948
\boldsymbol{\sigma}(\boldsymbol{\varepsilon}) &= \frac{E}{1-\nu^2}\left((1-\nu)\boldsymbol{\varepsilon} + \nu \mathrm{tr}\boldsymbol{\varepsilon}\boldsymbol I_2\right) && \text{Plane stress law}\\
5049
\boldsymbol u_y &=0 & \text{ on } \lbrace (x,y)\in \partial\Omega | y=0\rbrace& \text{ Dirichlet BC}\\
5150
\boldsymbol u_x &=0 & \text{ on } \lbrace (x,y)\in \partial\Omega | x=0\rbrace& \text{ Dirichlet BC}\\
52-
\boldsymbol t &= \boldsymbol{\sigma}_\mathrm{analytical} \cdot \boldsymbol n&\text{ on }\lbrace (x,y)\in \partial\Omega | x=l \lor y=l \rbrace& \text{ Neumann BC}
51+
\boldsymbol t &= \boldsymbol{\sigma}_\mathrm{analytical} \cdot \boldsymbol n&\text{ on }\Gamma_\mathrm{N}=\lbrace (x,y)\in \partial\Omega | x=l \lor y=l \rbrace& \text{ Neumann BC}
5352
\end{aligned}
5453
$$
5554

56-
The weak form is
55+
In the weak formulation of the problem, we want to find $\boldsymbol u$ such that
5756

5857
$$
59-
\int_{\Omega} \boldsymbol\varepsilon(\delta\boldsymbol{u}) : \boldsymbol{\sigma} \mathrm{d}{\boldsymbol{x}} =
60-
\int_{\Gamma_{\mathrm{N}}} {\boldsymbol{t}}\cdot\delta\boldsymbol{u}\mathrm{d}{\boldsymbol{s}}
58+
B(\boldsymbol u,\delta\boldsymbol u) = f(\delta\boldsymbol u) \quad \forall \boldsymbol \delta u
6159
$$
6260

63-
with a test function $\delta \boldsymbol u$
61+
with a test function $\delta \boldsymbol u$ and
62+
63+
$$
64+
\begin{aligned}
65+
B(\boldsymbol u,\delta\boldsymbol u) &= \int_{\Omega} \boldsymbol\varepsilon(\delta\boldsymbol{u}) : \boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\boldsymbol{u})) \mathrm{d}{\boldsymbol{x}} \\
66+
f(\delta\boldsymbol u)&=\int_{\Gamma_{\mathrm{N}}} {\boldsymbol{t}}\cdot\delta\boldsymbol{u}\mathrm{d}{\boldsymbol{s}}.
67+
\end{aligned}
68+
$$

0 commit comments

Comments
 (0)