Skip to content

Commit 76da2d5

Browse files
committed
Fix Latex
1 parent d5d4f55 commit 76da2d5

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

docs/benchmarks/linear elasticity/plate-with-hole.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7,19 +7,19 @@ We consider the case of an infinite plate with a circular hole in the center. Th
77
The solution is given in polar coordinates. Assume that the infinite plate is loaded in $x$-direction, then at
88
a point with polar coordinates $(r,\theta)\in\mathbb R_+ \times \mathbb R$, the polar stress components are given by
99

10-
\[
10+
$$
1111
\begin{aligned}
1212
\sigma_r &= \frac{p}{2}\left(1-\frac{a^2}{r^2}\right)+\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1-\frac{3a^2}{r^2}\right)\cos(2\theta)\\
1313
\sigma_\theta &=\frac{p}{2}\left(1+\frac{a^2}{r^2}\right) - \frac{p}{2}\left(1+\frac{3a^4}{r^4}\right)\cos(2\theta)\\
1414
\sigma_{r\theta} &= -\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1+\frac{3a^2}{r^2}\right)\sin(2\theta)
1515
\end{aligned}
16-
\]
16+
$$
1717
In order to transform this into a practical benchmark, we consider a rectangular subdomain
1818
of the infinite plate around the hole. The boundary conditions of the subdomain are determined
1919
from the analytical solution. The example is further reduced by only simulating one quarter
2020
of the rectangular domain and assuming symmetry conditions at the edges. Let $\Omega =[0,l]^2 \setminus\left\{(x,y) \mid \sqrt{x^2+y^2}<a \right\}$ be the domain of the benchmark example, then the PDE is given by
2121

22-
\[
22+
$$
2323
\begin{aligned}
2424
\mathrm{div}\boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\boldsymbol{u})) &= 0 &\quad \boldsymbol u \in \Omega & \\
2525
\boldsymbol{\varepsilon}(\boldsymbol u) &= \frac{1}{2}\left(\nabla \boldsymbol u + (\nabla\boldsymbol u)^\top\right) &&\text{Infinitesimal strain}\\
@@ -28,4 +28,4 @@ of the rectangular domain and assuming symmetry conditions at the edges. Let $\O
2828
\boldsymbol u_x &=0 & x=0& \text{Dirichlet BC}\\
2929
boldsymbol{n}
3030
\end{aligned}
31-
\]
31+
$$

0 commit comments

Comments
 (0)