Skip to content

15 description of plate with hole in docs #21

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 12 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 96 additions & 0 deletions docs/benchmarks/linear elasticity/plate-with-hole.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
# Infinite linear elastic plate with hole

We consider the case of an infinite plate with a circular hole with radius $a$ in the center. The plate is subjected to uniform tensile load $p$ at infinity. The analytical solution for the stress field has been derived by Kirsch in 1898 [@Kirsch1898].
<!-- include an svg picture here-->
![Infinite linear elastic plate with hole](plate-with-hole.svg)

The solution is given in polar stress components at a point with polar coordinates $(r,\theta)\in\mathbb R_+ \times \mathbb R$. Assume that the infinite plate is loaded in $x$-direction with load $p$, then the polar stress components are given by

$$
\begin{aligned}
\sigma_{rr}(r,\theta) &= \frac{p}{2}\left(1-\frac{a^2}{r^2}\right)+\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1-\frac{3a^2}{r^2}\right)\cos(2\theta)\\
\sigma_{\theta\theta}(r,\theta) &=\frac{p}{2}\left(1+\frac{a^2}{r^2}\right) - \frac{p}{2}\left(1+\frac{3a^4}{r^4}\right)\cos(2\theta)\\
\sigma_{r\theta}(r,\theta) &= -\frac{p}{2}\left(1-\frac{a^2}{r^2}\right)\left(1+\frac{3a^2}{r^2}\right)\sin(2\theta)
\end{aligned}
$$

In order to write the stresses in a cartesian coordiante system, they need to be rotated by $\theta$, which results in

$$
\begin{aligned}
\sigma_{xx} (r,\theta) &= \frac{3 a^{4} p \cos{\left(4 \theta \right)}}{2 r^{4}} - \frac{a^{2} p \left(1.5 \cos{\left(2 \theta \right)} + \cos{\left(4 \theta \right)}\right)}{r^{2}} + p \\
\sigma_{yy} (r,\theta)&= - \frac{3 a^{4} p \cos{\left(4 \theta \right)}}{2 r^{4}} - \frac{a^{2} p \left(\frac{\cos{\left(2 \theta \right)}}{2} - \cos{\left(4 \theta \right)}\right)}{r^{2}}\\
\sigma_{xy} (r,\theta) &= \frac{3 a^{4} p \sin{\left(4 \theta \right)}}{2 r^{4}} - \frac{a^{2} p \left(\frac{\sin{\left(2 \theta \right)}}{2} + \sin{\left(4 \theta \right)}\right)}{r^{2}}
\end{aligned}
$$

with the full stress tensor solution given by

$$
\boldsymbol\sigma_\mathrm{analytical} (r,\theta)= \begin{bmatrix} \sigma_{xx} & \sigma_{xy}\\\ \sigma_{xy} & \sigma_{yy} \end{bmatrix}.
$$

or for a cartesion point $(x,y)\in \mathbb R_+^2$:

$$
\boldsymbol\sigma_\mathrm{analytical} (x,y)=\boldsymbol\sigma_\mathrm{analytical} \left(\sqrt{x^2 + y^2},\arccos\frac{x}{\sqrt{x^2+y^2}}\right).
$$

In order to transform this into a practical benchmark, we consider a rectangular subdomain
of the infinite plate around the hole. The boundary conditions of the subdomain are determined
from the analytical solution. The example is further reduced by only simulating one quarter
of the rectangular domain with length $l$ and assuming symmetry conditions at the edges. Let

$$
\Omega =[0,l]^2 \setminus \lbrace (x,y) \mid \sqrt{x^2+y^2}<a \rbrace
$$

be the domain of the benchmark example and

$$
\begin{aligned}
\Gamma_\mathrm{D_1} &= \lbrace (x,y)\in \partial\Omega | y=0\rbrace \\
\Gamma_\mathrm{D_2} &= \lbrace (x,y)\in \partial\Omega | x=0\rbrace \\
\Gamma_\mathrm{N} &= \lbrace (x,y)\in \partial\Omega | x=l \lor y=l \rbrace
\end{aligned}
$$

then the PDE is given by

$$
\begin{aligned}
\mathrm{div}\boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\boldsymbol{u})) &= 0 &\quad \text{ on } \Omega & \\
\boldsymbol{\varepsilon}(\boldsymbol u) &= \frac{1}{2}\left(\nabla \boldsymbol u + (\nabla\boldsymbol u)^\top\right) &&\text{Infinitesimal strain}\\
\boldsymbol{\sigma}(\boldsymbol{\varepsilon}) &= \frac{E}{1-\nu^2}\left((1-\nu)\boldsymbol{\varepsilon} + \nu \mathrm{tr}\boldsymbol{\varepsilon}\boldsymbol I_2\right) && \text{Plane stress law}\\
\boldsymbol u_y &=0 & \text{ on } \Gamma_\mathrm{D_1}& \text{ Dirichlet BC}\\
\boldsymbol u_x &=0 & \text{ on } \Gamma_\mathrm{D_2}& \text{ Dirichlet BC}\\
\boldsymbol t &= \boldsymbol{\sigma}_\mathrm{analytical} \cdot \boldsymbol n & \text{ on } \Gamma_\mathrm{N} & \text{ Neumann BC}\\
\end{aligned}
$$

with the material parameters $E,\nu$ -- the Youngs modulus and Poisson ratio.
In the weak formulation of the problem, we want to find $\boldsymbol u$ such that

$$
B(\boldsymbol u,\delta\boldsymbol u) = f(\delta\boldsymbol u) \quad \forall \boldsymbol \delta u
$$

with a test function $\delta \boldsymbol u$ and

$$
\begin{aligned}
B(\boldsymbol u,\delta\boldsymbol u) &= \int_{\Omega} \boldsymbol\varepsilon(\delta\boldsymbol{u}) : \boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\boldsymbol{u})) \mathrm{d}{\boldsymbol{x}} \\
f(\delta\boldsymbol u)&=\int_{\Gamma_{\mathrm{N}}} {\boldsymbol{t}}\cdot\delta\boldsymbol{u}\mathrm{d}{\boldsymbol{s}}.
\end{aligned}
$$

## Table of parameters

| Parameter | Description |
| ------------ | ------------------------------ |
| $a$ in $m$ | Radius of the hole. |
| $l$ in $m$ | Length of the benchmark domain. |
| $E$ in $Pa$ | Youngs modulus. |
| $\nu$ in -- | Poisson ratio. |
| $p$ in $Pa$ | Load at infinity. |

282 changes: 282 additions & 0 deletions docs/benchmarks/linear elasticity/plate-with-hole.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
10 changes: 9 additions & 1 deletion docs/literature.bib
Original file line number Diff line number Diff line change
Expand Up @@ -19,4 +19,12 @@ @Book{Simo1998
language = {en},
url = {https://www.springer.com/gp/book/9780387975207},
urldate = {2020-06-23},
}
}
@article{Kirsch1898,
title={Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre},
author={Kirsch, Ernst Gustav},
journal={Zeitschrift des Vereines deutscher Ingenieure},
volume={42},
pages={797--807},
year={1898}
}
Loading