Skip to content

Coupled multiphysics finite element implementation for moisture diffusion in epoxy materials with stress-assisted transport

License

Notifications You must be signed in to change notification settings

BBahtiri/ABAQUS-Multiphysics-Diffusion-UEL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ABAQUS Multiphysics Diffusion UEL

License: MIT ABAQUS Fortran MATLAB

A coupled multiphysics finite element implementation for moisture diffusion in epoxy materials with stress-assisted transport mechanisms.

🔬 Overview

This project implements a User Element (UEL) for ABAQUS that simulates the coupled hydro-mechanical behavior of moisture diffusion in polymer materials. The element captures bidirectional coupling between mechanical stress fields and moisture transport phenomena, making it a multiphysics simulation.

Key Physics

  • Stress-assisted diffusion: Hydrostatic stress influences moisture transport
  • Coupled field equations: Simultaneous solution of mechanical and diffusion problems
  • Nonlinear coupling: Stress gradients create preferential diffusion pathways

✨ Key Features

  • 🔧 Multiphysics Coupling: Stress-assisted diffusion with hydrostatic stress influence
  • 🧮 20-Node Elements: Quadratic hexahedral elements with 80 DOF (60 mechanical + 20 concentration)
  • Monolithic Solution: Simultaneous solution of mechanical and diffusion fields
  • 🔗 ABAQUS Integration: Full integration with ABAQUS Standard
  • 📊 Visualization Support: MATLAB tools for result post-processing
  • 🧪 Material Flexibility: Configurable material properties for different polymers

📐 Governing Equations

Coupled Diffusion Equation

∂c/∂t = ∇·(D∇c) - (D·Vh)/(R·T) ∇·(σh∇c)
         ↑_______↑   ↑_________________↑
      Pure diffusion   Stress-assisted term

Mechanical Equilibrium

∇·σ = 0
σ = D:(ε - εswelling)

Coupling Parameter

κ = Vh/(R·T) = 8000/(8314.5 × 300) ≈ 3.2 × 10⁻³ MPa⁻¹

Where:

  • c: Moisture concentration [mol/mm³]
  • D: Diffusion coefficient [mm²/s]
  • σh: Hydrostatic stress [MPa]
  • Vh: Molar volume of water (8000 mm³/mol)
  • R: Gas constant (8314.5 J/(mol·K))
  • T: Temperature (300 K)

🚀 Quick Start

Prerequisites

  • ABAQUS Standard 2020 or later
  • Intel Fortran Compiler (part of ABAQUS installation)
  • MATLAB R2018a or later (for visualization)
  • Windows/Linux operating system

Basic Usage

  1. Download the UEL

    git clone https://github.com/BBahtiri/ABAQUS-Multiphysics-Diffusion-UEL.git
    cd ABAQUS-Multiphysics-Diffusion-UEL
  2. Run ABAQUS analysis

    abaqus -standard -job MyAnalysis -user Diffusion_3D.for
  3. Generate visualization mesh (MATLAB)

    % Place your ABAQUS input file as 'CT.inp'
    run('VisualMesh.m')
  4. Post-process results in ABAQUS/Viewer

Element Definition in ABAQUS Input File

*USER ELEMENT, NODES=20, TYPE=U1, PROPERTIES=3, COORDINATES=3, VAR=128
1,2,3
1,11

*ELEMENT, TYPE=U1, ELSET=SOLID
1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

*UEL PROPERTY, ELSET=SOLID
210000., 0.3, 0.0127
! E [MPa], ν [-], D [mm²/s]

🔬 Physics and Theory

Multiphysics Coupling Mechanisms

1. Mechanical → Diffusion Coupling

  • Tensile stress (σh > 0): Enhances diffusion by opening material microstructure
  • Compressive stress (σh < 0): Reduces diffusion by closing pore networks
  • Stress gradients: Create preferential diffusion pathways

2. Stress-Diffusion Interaction

The coupling term (Vh/RT)∇·(σh∇c) represents:

  • Pressure-driven moisture transport
  • Stress-concentration effects
  • Hydrostatic stress influence on chemical potential

Element Implementation

  • Element Type: 20-node quadratic hexahedral (C3D20-like)
  • Integration: 8-point Gauss quadrature
  • DOF: 80 total (3 displacement + 1 concentration per node)
  • Time Integration: Backward Euler for diffusion
  • Convergence: Monolithic Newton-Raphson

🏭 Applications

Aerospace Industry

  • Composite laminates: Carbon fiber/epoxy moisture absorption
  • Environmental certification: Hot/wet qualification testing
  • Stress concentration: Bolt holes and cutouts in humid environments

Marine Engineering

  • Underwater structures: Pressure vessel moisture penetration
  • Adhesive joints: Combined mechanical and environmental loading
  • Fatigue analysis: Moisture-assisted crack growth

Electronics Packaging

  • IC encapsulation: Moisture diffusion under thermal cycling
  • Reliability testing: Combined thermal-mechanical-moisture effects
  • Delamination prediction: Interface failure mechanisms

Infrastructure

  • Bridge components: Moisture penetration under traffic loads
  • Protective coatings: Mechanical damage accelerating moisture ingress
  • Durability assessment: Long-term environmental degradation

📊 Material Properties

Typical Values for Epoxy Materials

Property Symbol Value Unit
Young's Modulus E 3000-4000 MPa
Poisson's Ratio ν 0.35-0.40 -
Diffusion Coefficient D 1×10⁻³ - 1×10⁻² mm²/s
Molar Volume (Water) Vh 8000 mm³/mol
Temperature T 300 K

Property Variations

  • Temperature dependence: D = D₀ exp(-Q/RT)
  • Concentration dependence: D = D₀(1 + βc)
  • Stress dependence: Implemented through coupling term

🔧 Advanced Usage

Custom Material Properties

*UEL PROPERTY, ELSET=MATERIAL_A
! E [MPa], ν [-], D_step1 [mm²/s], D_step2 [mm²/s]
3500., 0.37, 0.008, 0.012

Boundary Conditions

! Moisture flux boundary condition
*DFLUX
NodeSet_Surface, 11, 1.0E-6

! Concentration boundary condition  
*BOUNDARY
NodeSet_Exposed, 11, 11, 0.1

Multi-Step Analysis

*STEP, NAME=Drying
*COUPLED TEMPERATURE-DISPLACEMENT, STEADY STATE
! Use D = props(3)

*STEP, NAME=Loading  
*COUPLED TEMPERATURE-DISPLACEMENT
! Use D = props(4)

🧪 Validation and Testing

Analytical Benchmarks

  • Pure diffusion (σ = 0) vs. Fick's law
  • Stress-free moisture uptake
  • Simple tension with diffusion
  • Complex loading scenarios

Experimental Validation

  • Moisture uptake curves
  • Stress-strain response
  • Coupled behavior validation

📈 Results and Visualization

Output Variables

Variable Description Access
U1, U2, U3 Displacements Standard ABAQUS output
NT Concentration (as temperature) Field output
SDV1-SDV6 Stress components State variables
SDV7-SDV12 Strain components State variables
SDV14 Hydrostatic stress State variables

Post-Processing Example

# Python script for ODB processing
from abaqus import *
from abaqusConstants import *

odb = openOdb('Analysis.odb')
step = odb.steps['Loading']
frame = step.frames[-1]

# Extract concentration field
concentration = frame.fieldOutputs['NT']
# Extract stress components  
stress_xx = frame.fieldOutputs['SDV1']
hydrostatic = frame.fieldOutputs['SDV14']

🤝 Contributing

Contributions are welcome! Please feel free to:

  1. 🐛 Report bugs via Issues
  2. 💡 Suggest features or improvements
  3. 🔧 Submit pull requests with enhancements
  4. 📖 Improve documentation
  5. 🧪 Add validation cases

Development Guidelines

  • Follow Fortran 90+ standards
  • Include test cases for new features
  • Update documentation accordingly
  • Maintain backward compatibility

📜 Citation

If you use this code in your research, please cite:

@software{bahtiri2025abaqus,
  title={ABAQUS Multiphysics Diffusion UEL: Coupled Stress-Diffusion Analysis},
  author={Bahtiri, Betim},
  year={2025},
  url={https://github.com/BBahtiri/ABAQUS-Multiphysics-Diffusion-UEL},
  note={User Element for coupled hydro-mechanical analysis in ABAQUS}
}

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

📞 Contact and Support

🔗 Related Work

⭐ Acknowledgments

  • ABAQUS User Community for documentation and examples
  • Research community in computational mechanics
  • Open source contributors and users

Made with ❤️ for the computational mechanics community

Star ⭐ this repository if you find it useful!

About

Coupled multiphysics finite element implementation for moisture diffusion in epoxy materials with stress-assisted transport

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published