🧬 MARL-PTM: A Modular Multi-Agent Reinforcement Learning System for Predicting Post-Translational Modifications
MARL-PTM is a state-of-the-art multi-agent deep learning framework for predicting residue-specific post-translational modifications (PTMs) using six biological data modalities. Designed around a Centralized Training, Decentralized Execution (CTDE) paradigm, MARL-PTM simulates specialized biological reasoning through reinforcement-learned PTM agents.
Level | Agent Name | Function |
---|---|---|
Data Agents (6) | SequenceAgent |
Encodes amino acid motifs and sequential dependencies |
StructureAgent |
Learns from DSSP and 3D features (e.g., helix, sheet, coil) | |
GraphAgent |
Processes residue-residue contact graphs | |
NetworkAgent |
Embeds pathway and interaction network context | |
ExpressionAgent |
Captures context-specific expression patterns | |
ProteoformAgent |
Encodes historical PTM sites and isoform variants | |
Integration | IntegratorAgent |
Learns to fuse embeddings across modalities via attention |
PTM Agents (13) | PTMAgent_k |
Learns PTM-specific classifiers (e.g., phosphorylation, etc.) |
Aggregator | AggregatorAgent |
Resolves competition between PTM agents to finalize prediction |
[ Protein_ID ]
↓
[ Data Loaders ] ──┬────────────┬────────────┬────────────┬────────────┬────────────┬────────────┐
↓ ↓ ↓ ↓ ↓ ↓ ↓
[Seq Agent] [Str Agent] [Graph Agent] [Expr Agent] [Prot Agent] [Net Agent] ...
↓ ↓ ↓ ↓ ↓ ↓
└──────→ [Integrator Agent: Fuse 6 × [L, D] → H] ────────→
↓
┌──────────────┴──────────────┐
↓ ↓ ↓
[PTM Agent 1] ... [PTM Agent 13]
↓ ↓
PTM Scores [L] × 13
↓
[Aggregator Agent: Argmax across PTMs]
↓
{residue: (PTM type, confidence score)}
- Training: All agents access shared embeddings and optimize jointly.
- Execution: Each PTM agent independently predicts residue-level scores.
- Communication: Through vector embeddings; no direct messaging between agents.
Condition | Reward |
---|---|
✅ Correct PTM and correct site | +1.0 |
❌ Incorrect PTM (false positive) | -1.0 |
🔄 Correct site, wrong PTM | +0.5 |
🧬 Motif/Proteoform matched | +0.25 |
Bonus rewards reflect biological plausibility even in ambiguous sites.
- Loss:
BCEWithLogitsLoss
+ optional reward-shaping - Optimizer:
Adam
with optional warmup + decay - Strategy: Multi-agent shared gradients through integrator → data agents
MARL-PTM/
│
├── data_loaders/ # Modality-specific tensor loaders
│ ├── sequence_loader.py
│ ├── structure_loader.py
│ ├── graph_loader.py
│ ├── expression_loader.py
│ ├── proteoform_loader.py
│ └── network_loader.py
│
├── agents/ # Agent architectures and logic
│ ├── base_agent.py
│ ├── sequence_agent.py
│ ├── structure_agent.py
│ ├── graph_agent.py
│ ├── expression_agent.py
│ ├── proteoform_agent.py
│ ├── network_agent.py
│ ├── integrator_agent.py
│ ├── ptm_agent.py
│ └── aggregator_agent.py
│
├── training/ # Training orchestration
│ ├── train_loop.py
│ ├── replay_buffer.py
│ ├── rewards.py
│ └── scheduler.py
│
├── configs/ # YAML configuration files
│ └── config.yaml
│
├── utils/ # Logging, visualization, metrics
│ ├── metrics.py
│ ├── logger.py
│ └── visualization.py
│
├── inference/ # Inference & PTM site prediction
│ └── predict_ptms.py
│
└── main.py # Entry point for training
git clone https://github.com/yourusername/MARL-PTM.git
cd MARL-PTM
pip install -r requirements.txt
Optional: install torch-geometric
with correct CUDA version via:
https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html
To train your model on synthetic or real-world datasets:
python main.py
To predict PTMs for trained models:
python inference/predict_ptms.py
Modify configs/config.yaml
to set paths, agents, and hyperparameters.
Performance is measured per PTM using:
- Precision / Recall / F1-score
- ROC-AUC (optional)
- Top-k residue prediction accuracy
If you use MARL-PTM in your research, please cite:
"MARL-PTM: A Multi-Agent Reinforcement Learning Framework for Predicting Post-Translational Modifications", [Author names], 2025. bioRxiv (in preparation)
We’re happy to collaborate on:
- Additional PTM types (e.g., SUMOylation, ADP-ribosylation)
- Real-world PTM data integration
- New reward strategies or graph encoders
Feel free to fork the repo, open issues, or submit a pull request!
Would you like this converted to a README.md
file or want badges (license, build, citation) added next?