chromhandler
(formerly chromatopy
) is a Python package that aims to streamline the data processing and analysis of time-course chromatographic reaction data. It allows processing raw or pre-processed chromatographic data, enriching it with metadata such as reaction time, temperature, pH, and initial concentrations of reaction components. Finally, the peaks of interest can be aggregated, concentrations calculated, and the time-course data for each analyte transformed to EnzymeML data.
chromhandler
is designed to work seamlessly with OpenChrom, enabling batch processing of proprietary chromatographic data. After processing in OpenChrom and exporting to an open file format, the data can be further analyzed in Jupyter Notebooks using chromhandler
. This allows for creating and applying calibration curves and generating EnzymeML files for subsequent data analysis.
For some output formats, chromhandler
provides a direct interface to read in data. For more information on the supported file formats and data preparation to use the chromhandler
workflow, refer to the data preparation section.
graph LR
AD[π Chromatographic Instrument] --> CAL
AD --> RXN
subgraph "πexperimental_data"
CAL["<div style='text-align:left;font-family:monospace'>
π calib_substrate<br>
βββ mh1_10mM.json<br>
βββ mh2_50mM.json<br>
βββ mh3_90mM.json<br><br>
π calib_prod1<br>
βββ prod1_10mM.json<br>
βββ prod1_50mM.json<br>
βββ prod1_90mM.json<br><br>
</div>"]
RXN["<div style='text-align:left;font-family:monospace'>
π reaction_mh9<br>
βββ mh9_1h.json<br>
βββ mh9_2h.json<br>
βββ mh9_3h.json<br>
βββ mh9_4h.json<br>
βββ mh9_5h.json<br>
βββ mh9_6h.json<br>
βββ mh9_12h.json
</div>"]
end
CAL -->|read| C_cal{"<span style='font-family:monospace'><b>chromhandler</b></span><br>"}
RXN -->|read| C_react{"<span style='font-family:monospace'><b>chromhandler</b></span><br>"}
cal1["<div style='text-align:left'>
Define measured molecules<br>
β retention time<br>
β PubChem CID
</div>"]
cal2["<div style='text-align:left'>
Create calibration standard
</div>"]
E4["Define reaction conditions"]
E3["Add measured molecules"]
E5["Define enzymes"]
Enz[π EnzymeML Document]
subgraph "Calibration mode"
C_cal --> cal1
cal1 --> cal2
end
subgraph "Reaction mode"
C_react --> E4
E4 --> E3
E3 --> E5
cal2 --> E3
end
E5 -->|convert| Enz
- π± Low friction data processing
Leave behind data processing in spreadsheet applications and directly start with data analysis based on raw data. - π§ͺ Enrich reaction data with metadata
Assign metadata like initial concentrations of reactants, temperature, pH, etc., to reaction data to yield modeling-ready data. - π Create and apply calibration curves
Create calibrators for your analytes and use them throughout your data analysis for seamless concentration calculation. - π FAIR data
Transform your data into EnzymeML format for subsequent analysis pipelines.
Install chromhandler
using pip
:
pip install chromhandler
or
pip install git+https://github.com/FAIRChemistry/Chromhandler.git
For more information and examples, please refer to the Documentation section.