Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ and this project adheres to [Semantic Versioning](http://semver.org/).

### Added
- Apply Black formatter [#589](https://github.com/IN-CORE/pyincore/issues/589)
- Equity Metric Analysis [#608](https://github.com/IN-CORE/pyincore/issues/608)
- Internal client connecting to the IN-CORE services [#609](https://github.com/IN-CORE/pyincore/issues/609)


Expand Down
7 changes: 7 additions & 0 deletions docs/source/modules.rst
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,13 @@ analyses/epnfunctionality
.. autoclass:: epnfunctionality.epnfunctionality.EpnFunctionalityUtil
:members:

analyses/equitymetric
=========================
.. autoclass:: equitymetric.equitymetric.EquityMetric
:members:
.. autoclass:: equitymetric.equitymetric.EquityMetricUtil
:members:

analyses/example
================
.. autoclass:: example.exampleanalysis.ExampleAnalysis
Expand Down
8 changes: 8 additions & 0 deletions pyincore/analyses/equitymetric/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# Copyright (c) 2024 University of Illinois and others. All rights reserved.
#
# This program and the accompanying materials are made available under the
# terms of the Mozilla Public License v2.0 which accompanies this distribution,
# and is available at https://www.mozilla.org/en-US/MPL/2.0/

from pyincore.analyses.equitymetric.equitymetric import EquityMetric
from pyincore.analyses.equitymetric.equitymetricutil import EquityMetricUtil
140 changes: 140 additions & 0 deletions pyincore/analyses/equitymetric/equitymetric.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
# Copyright (c) 2024 University of Illinois and others. All rights reserved.
#
# This program and the accompanying materials are made available under the
# terms of the Mozilla Public License v2.0 which accompanies this distribution,
# and is available at https://www.mozilla.org/en-US/MPL/2.0/

import numpy as np
from pyincore import BaseAnalysis
from pyincore.analyses.equitymetric.equitymetricutil import EquityMetricUtil


class EquityMetric(BaseAnalysis):
"""Computes equity metric.
Args:
incore_client: Service client with authentication info
"""

def __init__(self, incore_client):
super(EquityMetric, self).__init__(incore_client)

def run(self):
"""Execute equity metric analysis"""

division_decision_column = self.get_parameter("division_decision_column")
scarce_resource_df = self.get_input_dataset(
"scarce_resource"
).get_dataframe_from_csv()
hua_df = self.get_input_dataset(
"housing_unit_allocation"
).get_dataframe_from_csv()
if division_decision_column == "SVI" and "SVI" not in hua_df.columns:
hua_df = EquityMetricUtil.prepare_svi_as_division_decision(hua_df)

merged_df = hua_df.merge(
scarce_resource_df, how="inner", left_on="guid", right_on="guid"
)

equity_metric = self.equity_metric(merged_df, division_decision_column)

self.set_result_csv_data(
"equity_metric",
equity_metric,
name=self.get_parameter("result_name") + "_equity_metric",
)

return True

def equity_metric(self, merged_df, division_decision_column):
"""
Compute equity metric
Args:
merged_df: Merging housing unit allocation and scarce resource to create dataframes
division_decision_column: column name of the division decision variable e.g. SVI

Returns:
equity_metric: equity metric values that consist of Theil’s T Value, Between Zone Inequality, Within Zone Inequality

"""
# Calculation of households in each group
total_1 = merged_df[merged_df[division_decision_column] > 0].shape[
0
] # socially vulnerable populations
total_2 = merged_df[merged_df[division_decision_column] < 1].shape[
0
] # non socially vulnerable populations
total_households = (
total_1 + total_2
) # for non-vacant households (i.e., non-vacant are not included)

# Metric Computation
scarce_resource = merged_df["scarce_resource"]
yi = scarce_resource / np.sum(scarce_resource)
Yg_1 = np.sum(yi[merged_df[division_decision_column] > 0])
Yg_2 = np.sum(yi[merged_df[division_decision_column] < 1])
TheilT = np.sum(yi * np.log(yi * total_households))
bzi = np.sum(yi[merged_df[division_decision_column] > 0]) * np.log(
np.average(yi[merged_df[division_decision_column] > 0]) / np.average(yi)
) + np.sum(yi[merged_df[division_decision_column] < 1]) * np.log(
np.average(yi[merged_df[division_decision_column] < 1]) / np.average(yi)
)
wzi = Yg_1 * np.sum(
yi[merged_df[division_decision_column] > 0]
/ Yg_1
* np.log((yi[merged_df[division_decision_column] > 0] / Yg_1 * total_1))
) + Yg_2 * np.sum(
yi[merged_df[division_decision_column] < 1]
/ Yg_2
* np.log((yi[merged_df[division_decision_column] < 1] / Yg_2 * total_2))
)

return [{"Theils T": TheilT, "BZI": bzi, "WZI": wzi}]

def get_spec(self):
"""Get specifications of the Equity Metric analysis.
Returns:
obj: A JSON object of specifications of the Equity Metric analysis.
"""
return {
"name": "equity-metric",
"description": "Equity metric analysis",
"input_parameters": [
{
"id": "result_name",
"required": True,
"description": "result dataset name",
"type": str,
},
{
"id": "division_decision_column",
"required": True,
"description": "Division decision. "
"Binary variable associated with each household used to group it into two groups "
"(e.g. low income vs non low income, minority vs non-minority, "
"social vulnerability)",
"type": str,
},
],
"input_datasets": [
{
"id": "housing_unit_allocation",
"required": True,
"description": "A csv file with the merged dataset of the inputs, aka Probabilistic"
"House Unit Allocation",
"type": ["incore:housingUnitAllocation"],
},
{
"id": "scarce_resource",
"required": True,
"description": "Scarce resource dataset e.g. probability of service, return time, etc",
"type": ["incore:scarceResource"],
},
],
"output_datasets": [
{
"id": "equity_metric",
"description": "CSV file of equity metric, including Theil’s T Value, Between Zone Inequality, Within Zone Inequality",
"type": "incore:equityMetric",
}
],
}
57 changes: 57 additions & 0 deletions pyincore/analyses/equitymetric/equitymetricutil.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# Copyright (c) 2024 University of Illinois and others. All rights reserved.
#
# This program and the accompanying materials are made available under the
# terms of the Mozilla Public License v2.0 which accompanies this distribution,
# and is available at https://www.mozilla.org/en-US/MPL/2.0/

import pandas as pd


class EquityMetricUtil:
@staticmethod
def prepare_svi_as_division_decision(hua_df):
"""
socially vulnerability as division decision variable which is a binary variable associated with each household
used to group it into two groups
Args:
hua_df:

Returns:

"""
# Add variable to indicate if high socially vulnerability for metric's computation
median_income = hua_df["randincome"].median()

condition1 = hua_df["randincome"] <= median_income
condition2 = hua_df["ownershp"] == 2
condition3 = hua_df["race"] != 1
condition4 = hua_df["hispan"] != 0

hua_df["SVI"] = condition1 & condition2 & condition3 & condition4
hua_df["SVI"] = (hua_df["SVI"]).astype(int)

return hua_df

@staticmethod
def prepare_return_time_as_scarce_resource(return_df):
return_sequence = return_df.iloc[:, 4:94]
# add return time to the scarce resource dataset
time_to_return = EquityMetricUtil._time_to_return(return_sequence)
return_df["Return Time"] = pd.to_numeric(time_to_return)
return_df["scarce_resource"] = 91 - return_df["Return Time"]

return return_df

@staticmethod
def _time_to_return(return_sequence):
# now create a for loop to determine the time for each row
time_to_return = []
for i in range(0, return_sequence.shape[0]):
if max(return_sequence.iloc[i]) == 4:
column_index = (return_sequence == 4).idxmax(axis=1)[i]
else:
# assuming for 5 that it is never recovered, so we set it to max time interval of 90
column_index = 90
time_to_return.append(column_index)

return time_to_return
33 changes: 33 additions & 0 deletions tests/pyincore/analyses/equitymetric/test_equitymetric.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
from pyincore import IncoreClient, Dataset, DataService
from pyincore.analyses.equitymetric import EquityMetric
from pyincore.analyses.equitymetric import EquityMetricUtil
import pyincore.globals as pyglobals


def run_with_base_class():
client = IncoreClient(pyglobals.INCORE_API_DEV_URL)
datasvc = DataService(client)

# prepare input dataset
return_df = Dataset.from_data_service(
"66d7763b43810e1298b0e8b1", datasvc
).get_dataframe_from_csv()
scarce_resource_df = EquityMetricUtil.prepare_return_time_as_scarce_resource(
return_df
)
scarce_resource = Dataset.from_dataframe(
scarce_resource_df, "scarce_resource", data_type="incore:scarceResource"
)

equity_metric = EquityMetric(client)
equity_metric.set_parameter("result_name", "Galveston_recovery_time")
equity_metric.set_parameter("division_decision_column", "SVI")
equity_metric.load_remote_input_dataset(
"housing_unit_allocation", "66d7770543810e1298b0e8b6"
)
equity_metric.set_input_dataset("scarce_resource", scarce_resource)
equity_metric.run_analysis()


if __name__ == "__main__":
run_with_base_class()
Loading