Skip to content
Salim edited this page Apr 13, 2025 · 1 revision

๐Ÿงญ IgnitionAI - Project Roadmap

This document outlines the phased development of IgnitionAI โ€” a modular, browser-friendly framework for intelligent agent simulation and reinforcement learning.


โœ… Phase 1 โ€” Core Logic (MVP)

โš™๏ธ Goal: Run agent-environment logic headlessly (no UI)

โœ… Roadmap for "RL algo first" Phase A โ€” @ignitionai/backend-tfjs only Implementing classic algorithms with TensorFlow.js

  1. ๐Ÿ” Q-learning (tabular) โ€“ minimalist JS version without neural networks โœ… Implemented Q-Table agent with state/action lookup โœ… Added tests for basic functionality

  2. ๐Ÿง  DQN โ€“ Deep Q-Network โœ… Implemented MLP simple input โ†’ hidden โ†’ output โœ… Added replay buffer with experience sampling โœ… Implemented target network with periodic updates โœ… Added epsilon-greedy exploration/exploitation โœ… Loss function based on TD error โœ… Unit tests with training validation

  3. ๐Ÿง˜โ€โ™‚๏ธ PPO โ€“ Policy Gradient โœ… Created initial PPO agent skeleton

  • Implement Actor-Critic model
  • Implement episode-based training
  • Add policy and value loss functions

๐Ÿš€ Phase 1.5 โ€” Backend Infrastructure

๐Ÿงฐ Goal: Create robust, multi-environment backend support

โœ… Created modular monorepo structure โœ… Implemented robust backend selection system โœ… Added support for all major TensorFlow.js backends:

  • WebGPU (experimental)
  • WebGL
  • CPU
  • WASM โœ… Added helper utilities for backend detection and info โœ… Comprehensive unit tests and error handling
  • Add model serialization and loading

๐ŸŒ Phase 2 โ€” R3F Visualisation

๐ŸŽฎ Goal: Make the agent & target visible in a 3D scene

  • @ignitionai/r3f: add AgentMesh, TargetMesh, useAgent
  • @ignitionai/demo-target-chasing: setup Vite + R3F scene
  • Display step count and reward in the UI

๐Ÿค– Phase 3 โ€” TFJS Backend (Training & Inference)

๐Ÿง  Goal: Train and run a model directly in the browser

โœ… @ignitionai/backend-tfjs: built simple MLP model with configurable layers โœ… Implemented train() and predict() APIs via DQN agent

  • Add model serialization with save() and load()
  • Create streamlined Agent class interface

โšก Phase 4 โ€” ONNX Runtime Backend (Inference-only)

โšก Goal: Run optimized pre-trained models in production

โœ… Created initial package structure for ONNX backend

  • Implement ONNX Runtime Web integration
  • Add .onnx model loading and inference
  • Create InferenceBackend wrapper

๐Ÿง  Phase 5 โ€” Cognitive Agents (LLM & Planning)

๐Ÿ“š Goal: Enable agents with memory, reasoning and goals

  • @ignitionai/backend-langchain: LLM-powered agent
  • @ignitionai/backend-vercelai: edge-deployed AI actions
  • Add simple text environment or RAG-driven simulation

๐Ÿ Stretch Goals

  • Physics-based environment (BallBalancer, CartPole3D)
  • Multi-agent mode
  • Export agent replay logs
  • Web UI training dashboard
  • OpenHub-like demo launcher

Built with โค๏ธ by Salim (@IgnitionAI)