-
Notifications
You must be signed in to change notification settings - Fork 2
Home
This document outlines the phased development of IgnitionAI โ a modular, browser-friendly framework for intelligent agent simulation and reinforcement learning.
โ๏ธ Goal: Run agent-environment logic headlessly (no UI)
โ Roadmap for "RL algo first" Phase A โ @ignitionai/backend-tfjs only Implementing classic algorithms with TensorFlow.js
-
๐ Q-learning (tabular) โ minimalist JS version without neural networks โ Implemented Q-Table agent with state/action lookup โ Added tests for basic functionality
-
๐ง DQN โ Deep Q-Network โ Implemented MLP simple input โ hidden โ output โ Added replay buffer with experience sampling โ Implemented target network with periodic updates โ Added epsilon-greedy exploration/exploitation โ Loss function based on TD error โ Unit tests with training validation
-
๐งโโ๏ธ PPO โ Policy Gradient โ Created initial PPO agent skeleton
- Implement Actor-Critic model
- Implement episode-based training
- Add policy and value loss functions
๐งฐ Goal: Create robust, multi-environment backend support
โ Created modular monorepo structure โ Implemented robust backend selection system โ Added support for all major TensorFlow.js backends:
- WebGPU (experimental)
- WebGL
- CPU
- WASM โ Added helper utilities for backend detection and info โ Comprehensive unit tests and error handling
- Add model serialization and loading
๐ฎ Goal: Make the agent & target visible in a 3D scene
-
@ignitionai/r3f
: addAgentMesh
,TargetMesh
,useAgent
-
@ignitionai/demo-target-chasing
: setup Vite + R3F scene - Display step count and reward in the UI
๐ง Goal: Train and run a model directly in the browser
โ
@ignitionai/backend-tfjs
: built simple MLP model with configurable layers
โ
Implemented train()
and predict()
APIs via DQN agent
- Add model serialization with
save()
andload()
- Create streamlined
Agent
class interface
โก Goal: Run optimized pre-trained models in production
โ Created initial package structure for ONNX backend
- Implement ONNX Runtime Web integration
- Add
.onnx
model loading and inference - Create
InferenceBackend
wrapper
๐ Goal: Enable agents with memory, reasoning and goals
-
@ignitionai/backend-langchain
: LLM-powered agent -
@ignitionai/backend-vercelai
: edge-deployed AI actions - Add simple text environment or RAG-driven simulation
- Physics-based environment (BallBalancer, CartPole3D)
- Multi-agent mode
- Export agent replay logs
- Web UI training dashboard
- OpenHub-like demo launcher
Built with โค๏ธ by Salim (@IgnitionAI)