README
The base model is obtained from the AISquare Model Repository:
- DPA2_medium_28_10M_rc0_AIS.pt: View on AISquare
Fine-tune the model with your dataset using the following command:
dp --pt train input_finetune.json \
--finetune DPA2_medium_28_10M_rc0_AIS.pt \
--model-branch Domains_Alloy
input_finetune.json
: JSON config for fine-tuningDPA2_medium_28_10M_rc0_AIS.pt
: AIS model--model-branch
: Branch name to use (e.g.,Domains_Alloy
)
Folder Name | Description |
---|---|
2alloy_train |
Trained on all binary alloy training data. |
2alloy_train_valid |
Trained on binary alloy training + full test datasets. |
2alloy_train_valid20 |
Trained on training dataset + 20% of the test dataset (random split). |
The test set split is handled by
script/split_tv.py
for reproducibility.
Since dp test
cannot directly evaluate fine-tuned models, use the DPPTPredict.py
script.
Use dpa2_finetune_rmse.py
to compute RMSE between predictions and reference data:
python dpa2_finetune_rmse.py <reference_dir> <predict_dir>
<reference_dir>
: Directory of original data<predict_dir>
: Directory of predicted results
The script prints per-system and global RMSE metrics.
# 1. Fine-tune the model
dp --pt train input_finetune.json \
--finetune DPA2_medium_28_10M_rc0_AIS.pt \
--model-branch Domains_Alloy
# 2. Predict with fine-tuned model
python DPPTPredict.py
# 3. Evaluate RMSE
python dpa2_finetune_rmse.py data/binary_alloys/train predictions/2alloy_train
Feel free to open issues or submit pull requests to improve scripts, add new datasets, or incorporate additional evaluation metrics.
This project is licensed under the MIT License. See LICENSE for details.