Skip to content

JiangXiaoMingSan/Training-scripts-and-results-for-different-metal-compositions

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

9 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

README


License [Python]

πŸ”— Model Source

The base model is obtained from the AISquare Model Repository:

πŸš€ Training

Fine-tune the model with your dataset using the following command:

dp --pt train input_finetune.json \
   --finetune DPA2_medium_28_10M_rc0_AIS.pt \
   --model-branch Domains_Alloy
  • input_finetune.json: JSON config for fine-tuning
  • DPA2_medium_28_10M_rc0_AIS.pt: AIS model
  • --model-branch: Branch name to use (e.g., Domains_Alloy)

πŸ“‚ Folder Naming Convention

Folder Name Description
2alloy_train Trained on all binary alloy training data.
2alloy_train_valid Trained on binary alloy training + full test datasets.
2alloy_train_valid20 Trained on training dataset + 20% of the test dataset (random split).

The test set split is handled by script/split_tv.py for reproducibility.

πŸ” Prediction & Testing

Since dp test cannot directly evaluate fine-tuned models, use the DPPTPredict.py script.

πŸ“Š Evaluation Script

Use dpa2_finetune_rmse.py to compute RMSE between predictions and reference data:

python dpa2_finetune_rmse.py <reference_dir> <predict_dir>
  • <reference_dir>: Directory of original data
  • <predict_dir>: Directory of predicted results

The script prints per-system and global RMSE metrics.

πŸ’‘ Example Usage

# 1. Fine-tune the model
dp --pt train input_finetune.json \
   --finetune DPA2_medium_28_10M_rc0_AIS.pt \
   --model-branch Domains_Alloy

# 2. Predict with fine-tuned model
python DPPTPredict.py 

# 3. Evaluate RMSE
python dpa2_finetune_rmse.py data/binary_alloys/train predictions/2alloy_train

🀝 Contributing

Feel free to open issues or submit pull requests to improve scripts, add new datasets, or incorporate additional evaluation metrics.

πŸ“„ License

This project is licensed under the MIT License. See LICENSE for details.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages