2025.8.20 v3.2.0 released
-
Deployment Capability Upgrades:
- Fully supports PaddlePaddle framework versions 3.1.0 and 3.1.1.
- High-performance inference supports CUDA 12, with backend options including Paddle Inference and ONNX Runtime.
- High-stability serving solution is fully open-sourced, enabling users to customize Docker images and SDKs as needed.
- High-stability serving solution supports invocation via manually constructed HTTP requests, allowing client applications to be developed in any programming language.
-
Key Model Additions:
- Added training, inference, and deployment support for PP-OCRv5 English, Thai, and Greek recognition models. The PP-OCRv5 English model delivers an 11% improvement over the main PP-OCRv5 model in English scenarios, with the Thai model achieving an accuracy of 82.68% and the Greek model 89.28%.
-
Benchmark Enhancements:
- All pipelines support fine-grained benchmarking, enabling the measurement of end-to-end inference time as well as per-layer and per-module latency data to assist with performance analysis.
- Added key metrics such as inference latency and memory usage for commonly used configurations on mainstream hardware to the documentation, providing deployment reference for users.
-
Bug Fixes:
- Fixed an issue where invalid input image file formats could cause recursive calls.
- Resolved ineffective parameter settings for chart recognition, seal recognition, and document pre-processing in the configuration files for the PP-DocTranslation and PP-StructureV3 pipelines.
- Fixed an issue where PDF files were not properly closed after inference.
-
Other Updates:
- Added support for Windows users with NVIDIA 50-series graphics cards; users can install the corresponding PaddlePaddle framework version as per the installation guide.
- The PP-OCR model series now supports returning coordinates for individual characters.
- The
model_name
parameter inPaddlePredictorOption
has been moved toPaddleInfer
, improving usability. - Refactored the official model download logic, with new support for multiple model hosting platforms such as AIStudio and ModelScope.
2025.8.20 v3.2.0 发布
-
部署能力升级:
- 全面支持飞桨框架 3.1.0 和 3.1.1 版本。
- 高性能推理支持 CUDA 12,可使用 Paddle Inference、ONNX Runtime 后端推理。
- 高稳定性服务化部署方案全面开源,支持用户根据需求对 Docker 镜像和 SDK 进行定制化修改。
- 高稳定性服务化部署方案支持通过手动构造HTTP请求的方式调用,该方式允许客户端代码使用任意编程语言编写。
-
重要模型新增:
- 新增 PP-OCRv5 英文、泰文、希腊文识别模型的训练、推理、部署。其中 PP-OCRv5 英文模型较 PP-OCRv5 主模型在英文场景提升 11%,泰文识别模型精度 82.68%,希腊文识别模型精度 89.28%。
-
Benchmark升级:
- 全部产线支持产线细粒度 benchmark,能够测量产线端到端推理时间以及逐层、逐模块的耗时数据,可用于辅助产线性能分析。
- 在文档中补充各产线常用配置在主流硬件上的关键指标,包括推理耗时和内存占用等,为用户部署提供参考。
-
Bug修复:
- 修复了当输入图片文件格式不合法时,导致递归调用的问题。
- 修复了 PP-DocTranslation 和 PP-StructureV3 产线配置文件中图表识别、印章识别、文档预处理参数设置不生效的问题。
- 修复 PDF 文件在推理结束后未正确关闭的问题。
-
其他升级:
- 支持 Windows 用户使用英伟达 50 系显卡,可根据安装文档安装对应版本的 paddle 框架。
- PP-OCR 系列模型支持返回单文字坐标。
- 将
PaddlePredictorOption
中的model_name
参数移至PaddleInfer
中,改善了用户易用性。 - 重构了官方模型下载逻辑,新增了 AIStudio、ModelScope 等多模型托管平台。
Full Changelog: v3.1.4...v3.2.0