Skip to content

Conversation

sevyharris
Copy link
Contributor

Motivation or Problem

RMG misses a flux pair when generating the flux pairs for surface dissocative adsorption reactions. See #2782 describing the issue.

Description of Changes

This code adds a case for handling dissocative adsorption reactions in the reactions.generate_pairs() function so that the gas-phase reactant gets paired with both surface products instead of just the bigger one.

Testing

I need to add some formal unit tests for these.

Reviewer Tips

Are there any other places in the code besides the flux diagrams that use the flux pairs? I'll need to make sure this still works for those applications.

@sevyharris sevyharris linked an issue Apr 10, 2025 that may be closed by this pull request
@sevyharris sevyharris force-pushed the dissociative_adsorption_flux_pairs branch 2 times, most recently from ba96873 to ec82f40 Compare April 10, 2025 16:32
@sevyharris
Copy link
Contributor Author

It now draws the missing arrow in my flux diagram for NH3 -> HX:

image

Copy link

Regression Testing Results

WARNING:root:Initial mole fractions do not sum to one; normalizing.
WARNING:root:Initial mole fractions do not sum to one; normalizing.
WARNING:root:Initial mole fractions do not sum to one; normalizing.
⚠️ One or more regression tests failed.
Please download the failed results and run the tests locally or check the log to see why.

Detailed regression test results.

Regression test aromatics:

Reference: Execution time (DD:HH:MM:SS): 00:00:01:08
Current: Execution time (DD:HH:MM:SS): 00:00:01:07
Reference: Memory used: 2805.76 MB
Current: Memory used: 2787.57 MB

aromatics Passed Core Comparison ✅

Original model has 15 species.
Test model has 15 species. ✅
Original model has 11 reactions.
Test model has 11 reactions. ✅

aromatics Passed Edge Comparison ✅

Original model has 106 species.
Test model has 106 species. ✅
Original model has 358 reactions.
Test model has 358 reactions. ✅

Observables Test Case: Aromatics Comparison

✅ All Observables varied by less than 0.500 on average between old model and new model in all conditions!

aromatics Passed Observable Testing ✅

Regression test liquid_oxidation:

Reference: Execution time (DD:HH:MM:SS): 00:00:02:22
Current: Execution time (DD:HH:MM:SS): 00:00:02:21
Reference: Memory used: 2910.93 MB
Current: Memory used: 2914.41 MB

liquid_oxidation Passed Core Comparison ✅

Original model has 37 species.
Test model has 37 species. ✅
Original model has 241 reactions.
Test model has 241 reactions. ✅

liquid_oxidation Failed Edge Comparison ❌

Original model has 214 species.
Test model has 214 species. ✅
Original model has 1593 reactions.
Test model has 1593 reactions. ✅
The original model has 4 reactions that the tested model does not have. ❌
rxn: C[CH]CC(C)OO(33) <=> CCC[C](C)OO(78) origin: intra_H_migration
rxn: CCCC[CH]OO(96) <=> C[CH]CCCOO(51) origin: intra_H_migration
rxn: CC(C[CH]COO)OO(115) <=> [OH](22) + CC(CCC=O)OO(116) origin: intra_H_migration
rxn: CC(C[CH]COO)OO(115) <=> [OH](22) + CC(=O)CCCOO(112) origin: intra_H_migration
The tested model has 4 reactions that the original model does not have. ❌
rxn: C[CH]CC(C)OO(31) <=> [OH](22) + CCCC(C)=O(28) origin: intra_H_migration
rxn: C[CH]CCCOO(48) <=> [OH](22) + CCCCC=O(45) origin: intra_H_migration
rxn: CC(C[CH]COO)OO(118) <=> CC(CC[CH]OO)OO(133) origin: intra_H_migration
rxn: CC(C[CH]COO)OO(118) <=> C[C](CCCOO)OO(132) origin: intra_H_migration

Non-identical kinetics! ❌
original:
rxn: CCC(CC)O[O](36) + CCCCCO[O](35) <=> oxygen(1) + CCC([O])CC(67) + CCCCC[O](69) origin: Peroxyl_Disproportionation
tested:
rxn: CCC(CC)O[O](37) + CCCCCO[O](36) <=> oxygen(1) + CCC([O])CC(69) + CCCCC[O](67) origin: Peroxyl_Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): 3.54 4.28 4.73 5.02 5.39 5.62 5.91 6.06
k(T): 7.83 7.49 7.23 7.02 6.68 6.42 5.95 5.61

kinetics: Arrhenius(A=(3.2e+12,'cm^3/(mol*s)'), n=0, Ea=(4.064,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-5R-R_7R!H->C_N-7C-inRing_Ext-5R-R""")
kinetics: Arrhenius(A=(3.18266e+20,'cm^3/(mol*s)'), n=-2.694, Ea=(0,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-5R-R_7R!H->C_N-7C-inRing""")
kinetics: Estimated from node Root_Ext-5R-R_7R!H->C_N-7C-inRing_Ext-5R-R
kinetics: Estimated from node Root_Ext-5R-R_7R!H->C_N-7C-inRing

Observables Test Case: liquid_oxidation Comparison

✅ All Observables varied by less than 0.100 on average between old model and new model in all conditions!

liquid_oxidation Passed Observable Testing ✅

Regression test nitrogen:

Reference: Execution time (DD:HH:MM:SS): 00:00:01:27
Current: Execution time (DD:HH:MM:SS): 00:00:01:26
Reference: Memory used: 2907.28 MB
Current: Memory used: 2899.26 MB

nitrogen Passed Core Comparison ✅

Original model has 41 species.
Test model has 41 species. ✅
Original model has 360 reactions.
Test model has 360 reactions. ✅

nitrogen Passed Edge Comparison ✅

Original model has 133 species.
Test model has 133 species. ✅
Original model has 983 reactions.
Test model has 983 reactions. ✅

Observables Test Case: NC Comparison

✅ All Observables varied by less than 0.200 on average between old model and new model in all conditions!

nitrogen Passed Observable Testing ✅

Regression test oxidation:

Reference: Execution time (DD:HH:MM:SS): 00:00:02:33
Current: Execution time (DD:HH:MM:SS): 00:00:02:27
Reference: Memory used: 2785.30 MB
Current: Memory used: 2771.01 MB

oxidation Passed Core Comparison ✅

Original model has 59 species.
Test model has 59 species. ✅
Original model has 694 reactions.
Test model has 694 reactions. ✅

oxidation Passed Edge Comparison ✅

Original model has 230 species.
Test model has 230 species. ✅
Original model has 1526 reactions.
Test model has 1526 reactions. ✅

Observables Test Case: Oxidation Comparison

✅ All Observables varied by less than 0.500 on average between old model and new model in all conditions!

oxidation Passed Observable Testing ✅

Regression test sulfur:

Reference: Execution time (DD:HH:MM:SS): 00:00:00:55
Current: Execution time (DD:HH:MM:SS): 00:00:00:55
Reference: Memory used: 2879.27 MB
Current: Memory used: 2866.51 MB

sulfur Passed Core Comparison ✅

Original model has 27 species.
Test model has 27 species. ✅
Original model has 74 reactions.
Test model has 74 reactions. ✅

sulfur Failed Edge Comparison ❌

Original model has 89 species.
Test model has 89 species. ✅
Original model has 227 reactions.
Test model has 227 reactions. ✅
The original model has 1 reactions that the tested model does not have. ❌
rxn: O(4) + SO2(15) (+N2) <=> SO3(16) (+N2) origin: primarySulfurLibrary
The tested model has 1 reactions that the original model does not have. ❌
rxn: O(4) + SO2(15) (+N2) <=> SO3(16) (+N2) origin: primarySulfurLibrary

Observables Test Case: SO2 Comparison

✅ All Observables varied by less than 0.100 on average between old model and new model in all conditions!

sulfur Passed Observable Testing ✅

Regression test superminimal:

Reference: Execution time (DD:HH:MM:SS): 00:00:00:39
Current: Execution time (DD:HH:MM:SS): 00:00:00:39
Reference: Memory used: 2980.01 MB
Current: Memory used: 2943.20 MB

superminimal Passed Core Comparison ✅

Original model has 13 species.
Test model has 13 species. ✅
Original model has 21 reactions.
Test model has 21 reactions. ✅

superminimal Passed Edge Comparison ✅

Original model has 18 species.
Test model has 18 species. ✅
Original model has 28 reactions.
Test model has 28 reactions. ✅

Regression test RMS_constantVIdealGasReactor_superminimal:

Reference: Execution time (DD:HH:MM:SS): 00:00:02:25
Current: Execution time (DD:HH:MM:SS): 00:00:02:24
Reference: Memory used: 3499.60 MB
Current: Memory used: 3502.90 MB

RMS_constantVIdealGasReactor_superminimal Passed Core Comparison ✅

Original model has 13 species.
Test model has 13 species. ✅
Original model has 19 reactions.
Test model has 19 reactions. ✅

RMS_constantVIdealGasReactor_superminimal Passed Edge Comparison ✅

Original model has 13 species.
Test model has 13 species. ✅
Original model has 19 reactions.
Test model has 19 reactions. ✅

Observables Test Case: RMS_constantVIdealGasReactor_superminimal Comparison

✅ All Observables varied by less than 0.100 on average between old model and new model in all conditions!

RMS_constantVIdealGasReactor_superminimal Passed Observable Testing ✅

Regression test RMS_CSTR_liquid_oxidation:

Reference: Execution time (DD:HH:MM:SS): 00:00:06:16
Current: Execution time (DD:HH:MM:SS): 00:00:06:16
Reference: Memory used: 3495.66 MB
Current: Memory used: 3501.17 MB

RMS_CSTR_liquid_oxidation Passed Core Comparison ✅

Original model has 37 species.
Test model has 37 species. ✅
Original model has 202 reactions.
Test model has 202 reactions. ✅

RMS_CSTR_liquid_oxidation Passed Edge Comparison ✅

Original model has 248 species.
Test model has 248 species. ✅
Original model has 2057 reactions.
Test model has 2057 reactions. ✅

Observables Test Case: RMS_CSTR_liquid_oxidation Comparison

✅ All Observables varied by less than 0.100 on average between old model and new model in all conditions!

RMS_CSTR_liquid_oxidation Passed Observable Testing ✅

Regression test fragment:

Reference: Execution time (DD:HH:MM:SS): 00:00:00:42
Current: Execution time (DD:HH:MM:SS): 00:00:00:42
Reference: Memory used: 2709.54 MB
Current: Memory used: 2699.99 MB

fragment Passed Core Comparison ✅

Original model has 10 species.
Test model has 10 species. ✅
Original model has 2 reactions.
Test model has 2 reactions. ✅

fragment Passed Edge Comparison ✅

Original model has 33 species.
Test model has 33 species. ✅
Original model has 47 reactions.
Test model has 47 reactions. ✅

Observables Test Case: fragment Comparison

✅ All Observables varied by less than 0.100 on average between old model and new model in all conditions!

fragment Passed Observable Testing ✅

Regression test RMS_constantVIdealGasReactor_fragment:

Reference: Execution time (DD:HH:MM:SS): 00:00:03:04
Current: Execution time (DD:HH:MM:SS): 00:00:03:04
Reference: Memory used: 3642.89 MB
Current: Memory used: 3640.20 MB

RMS_constantVIdealGasReactor_fragment Passed Core Comparison ✅

Original model has 10 species.
Test model has 10 species. ✅
Original model has 2 reactions.
Test model has 2 reactions. ✅

RMS_constantVIdealGasReactor_fragment Passed Edge Comparison ✅

Original model has 27 species.
Test model has 27 species. ✅
Original model has 24 reactions.
Test model has 24 reactions. ✅

Observables Test Case: RMS_constantVIdealGasReactor_fragment Comparison

✅ All Observables varied by less than 0.100 on average between old model and new model in all conditions!

RMS_constantVIdealGasReactor_fragment Passed Observable Testing ✅

Regression test minimal_surface:

Reference: Execution time (DD:HH:MM:SS): 00:00:00:45
Current: Execution time (DD:HH:MM:SS): 00:00:00:44
Reference: Memory used: 2892.39 MB
Current: Memory used: 2880.00 MB

minimal_surface Passed Core Comparison ✅

Original model has 11 species.
Test model has 11 species. ✅
Original model has 3 reactions.
Test model has 3 reactions. ✅

minimal_surface Passed Edge Comparison ✅

Original model has 38 species.
Test model has 38 species. ✅
Original model has 38 reactions.
Test model has 38 reactions. ✅

Observables Test Case: minimal_surface Comparison

✅ All Observables varied by less than 0.500 on average between old model and new model in all conditions!

minimal_surface Passed Observable Testing ✅

beep boop this comment was written by a bot 🤖

Copy link

This pull request is being automatically marked as stale because it has not received any interaction in the last 90 days. Please leave a comment if this is still a relevant pull request, otherwise it will automatically be closed in 30 days.

@github-actions github-actions bot added the stale stale issue/PR as determined by actions bot label Jul 10, 2025
@rwest rwest force-pushed the dissociative_adsorption_flux_pairs branch from 1bb7d35 to b40ca9b Compare July 20, 2025 19:46
Copy link

Regression Testing Results

⚠️ One or more regression tests failed.
Please download the failed results and run the tests locally or check the log to see why.

Detailed regression test results.

Regression test aromatics:

Reference: Execution time (DD:HH:MM:SS): 00:00:00:49
Current: Execution time (DD:HH:MM:SS): 00:00:00:49
Reference: Memory used: 748.30 MB
Current: Memory used: 747.99 MB

aromatics Passed Core Comparison ✅

Original model has 15 species.
Test model has 15 species. ✅
Original model has 11 reactions.
Test model has 11 reactions. ✅

aromatics Failed Edge Comparison ❌

Original model has 106 species.
Test model has 106 species. ✅
Original model has 358 reactions.
Test model has 358 reactions. ✅

Non-identical thermo! ❌
original: C1=CC2C=CC=1C=C2
tested: C1=CC2C=CC=1C=C2

Hf(300K) S(300K) Cp(300K) Cp(400K) Cp(500K) Cp(600K) Cp(800K) Cp(1000K) Cp(1500K)
129.39 79.85 22.98 30.09 36.61 42.21 50.22 55.39 65.95
164.90 80.93 22.21 28.97 35.25 40.69 48.70 53.97 64.36

thermo: Thermo group additivity estimation: group(Cs-(Cds-Cds)(Cds-Cds)(Cds-Cds)H) + group(Cds-Cds(Cds-Cds)(Cds-Cds)) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-Cds(Cds-Cds)H) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsCsH) + group(Cdd-CdsCds) + Estimated bicyclic component: polycyclic(s4_6_6_ane) - ring(Cyclohexane) - ring(Cyclohexane) + ring(124cyclohexatriene) + ring(1,4-Cyclohexadiene)
thermo: Thermo group additivity estimation: group(Cs-(Cds-Cds)(Cds-Cds)(Cds-Cds)H) + group(Cds-Cds(Cds-Cds)(Cds-Cds)) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-Cds(Cds-Cds)H) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsCsH) + group(Cdd-CdsCds) + Estimated bicyclic component: polycyclic(s4_6_6_ane) - ring(Cyclohexane) - ring(Cyclohexane) + ring(124cyclohexatriene) + ring(124cyclohexatriene)

Non-identical kinetics! ❌
original:
rxn: [c]1ccccc1(3) + C1=CC2C=C[C]1C=C2(49) <=> benzene(1) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation
tested:
rxn: [c]1ccccc1(3) + C1=CC2C=C[C]1C=C2(49) <=> benzene(1) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): 4.24 4.69 5.05 5.33 5.79 6.14 6.78 7.23
k(T): -3.00 -0.74 0.70 1.71 3.07 3.97 5.33 6.15

kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(0,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0""")
kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(9.943,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 38.5 to 41.6 kJ/mol to match endothermicity of reaction.""")
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 38.5 to 41.6 kJ/mol to match endothermicity of reaction.

Non-identical kinetics! ❌
original:
rxn: [H](4) + C1=CC2C=C[C]1C=C2(49) <=> [H][H](11) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation
tested:
rxn: [H](4) + C1=CC2C=C[C]1C=C2(49) <=> [H][H](11) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): 5.77 5.83 5.88 5.92 5.97 6.02 6.10 6.16
k(T): -7.44 -4.08 -2.05 -0.69 1.02 2.06 3.46 4.18

kinetics: Arrhenius(A=(4.06926e+10,'cm^3/(mol*s)'), n=0.47, Ea=(0,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O Multiplied by reaction path degeneracy 3.0""")
kinetics: Arrhenius(A=(4.06926e+10,'cm^3/(mol*s)'), n=0.47, Ea=(18.137,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O Multiplied by reaction path degeneracy 3.0 Ea raised from 75.2 to 75.9 kJ/mol to match endothermicity of reaction.""")
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O
Multiplied by reaction path degeneracy 3.0
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O
Multiplied by reaction path degeneracy 3.0
Ea raised from 75.2 to 75.9 kJ/mol to match endothermicity of reaction.

Non-identical kinetics! ❌
original:
rxn: [CH]=C(7) + C1=CC2C=C[C]1C=C2(49) <=> C=C(13) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation
tested:
rxn: [CH]=C(7) + C1=CC2C=C[C]1C=C2(49) <=> C=C(13) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): 4.06 4.76 5.18 5.46 5.81 6.02 6.30 6.44
k(T): -7.17 -3.66 -1.56 -0.16 1.60 2.65 4.05 4.75

kinetics: Arrhenius(A=(7.23e+12,'cm^3/(mol*s)'), n=0, Ea=(3.841,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_N-Sp-6R!H-4CHNS Multiplied by reaction path degeneracy 3.0""")
kinetics: Arrhenius(A=(7.23e+12,'cm^3/(mol*s)'), n=0, Ea=(19.262,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_N-Sp-6R!H-4CHNS Multiplied by reaction path degeneracy 3.0""")
Identical kinetics comments:
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_N-Sp-6R!H-4CHNS
Multiplied by reaction path degeneracy 3.0

Non-identical kinetics! ❌
original:
rxn: [CH]1C2=CC=CC12(8) + C1=CC2C=C[C]1C=C2(49) <=> C1=CC2CC2=C1(27) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation
tested:
rxn: [CH]1C2=CC=CC12(8) + C1=CC2C=C[C]1C=C2(49) <=> C1=CC2CC2=C1(27) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): -4.55 -1.90 -0.23 0.94 2.49 3.50 5.02 5.92
k(T): -30.48 -21.35 -15.79 -12.03 -7.23 -4.28 -0.16 2.03

kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(12.063,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 46.8 to 50.5 kJ/mol to match endothermicity of reaction.""")
kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(47.659,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 195.4 to 199.4 kJ/mol to match endothermicity of reaction.""")
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 46.8 to 50.5 kJ/mol to match endothermicity of reaction.
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 195.4 to 199.4 kJ/mol to match endothermicity of reaction.

Non-identical kinetics! ❌
original:
rxn: [CH]1C2=CC=CC12(8) + C1=CC2C=C[C]1C=C2(49) <=> C1=CC2C=C2C1(29) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation
tested:
rxn: [CH]1C2=CC=CC12(8) + C1=CC2C=C[C]1C=C2(49) <=> C1=CC2C=C2C1(29) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): -5.30 -2.46 -0.68 0.57 2.21 3.28 4.87 5.80
k(T): -31.23 -21.91 -16.23 -12.40 -7.51 -4.50 -0.31 1.91

kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(13.089,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 53.5 to 54.8 kJ/mol to match endothermicity of reaction.""")
kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(48.686,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 202.2 to 203.7 kJ/mol to match endothermicity of reaction.""")
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 53.5 to 54.8 kJ/mol to match endothermicity of reaction.
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 202.2 to 203.7 kJ/mol to match endothermicity of reaction.

Non-identical kinetics! ❌
original:
rxn: [CH]1C2=CC=CC12(8) + C1=CC2C=C[C]1C=C2(49) <=> C1=CC2=CC2C1(28) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation
tested:
rxn: [CH]1C2=CC=CC12(8) + C1=CC2C=C[C]1C=C2(49) <=> C1=CC2=CC2C1(28) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): -1.38 0.48 1.67 2.52 3.68 4.45 5.66 6.39
k(T): -27.24 -18.91 -13.84 -10.40 -6.02 -3.30 0.48 2.51

kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(7.718,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0""")
kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(43.208,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 180.2 to 180.8 kJ/mol to match endothermicity of reaction.""")
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 180.2 to 180.8 kJ/mol to match endothermicity of reaction.

Non-identical kinetics! ❌
original:
rxn: [CH]=CC=C(15) + C1=CC2C=C[C]1C=C2(49) <=> C=CC=C(17) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation
tested:
rxn: [CH]=CC=C(15) + C1=CC2C=C[C]1C=C2(49) <=> C=CC=C(17) + C1=CC2C=CC=1C=C2(79) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): -0.49 0.99 1.87 2.46 3.19 3.64 4.23 4.52
k(T): -11.95 -7.61 -5.01 -3.27 -1.10 0.20 1.93 2.80

kinetics: Arrhenius(A=(2.529e+11,'cm^3/(mol*s)'), n=0, Ea=(8.084,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-6R!H-R Multiplied by reaction path degeneracy 3.0""")
kinetics: Arrhenius(A=(2.529e+11,'cm^3/(mol*s)'), n=0, Ea=(23.821,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-6R!H-R Multiplied by reaction path degeneracy 3.0""")
Identical kinetics comments:
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-6R!H-R
Multiplied by reaction path degeneracy 3.0

Non-identical kinetics! ❌
original:
rxn: C1=CC2C=C[C]1C=C2(49) + [CH]=Cc1ccccc1(12) <=> C1=CC2C=CC=1C=C2(79) + C=Cc1ccccc1(16) origin: Disproportionation
tested:
rxn: C1=CC2C=C[C]1C=C2(49) + [CH]=Cc1ccccc1(12) <=> C1=CC2C=CC=1C=C2(79) + C=Cc1ccccc1(16) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): -0.66 0.85 1.76 2.37 3.13 3.58 4.19 4.49
k(T): -12.28 -7.86 -5.21 -3.44 -1.23 0.10 1.87 2.75

kinetics: Arrhenius(A=(2.529e+11,'cm^3/(mol*s)'), n=0, Ea=(8.328,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-6R!H-R Multiplied by reaction path degeneracy 3.0""")
kinetics: Arrhenius(A=(2.529e+11,'cm^3/(mol*s)'), n=0, Ea=(24.273,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-6R!H-R Multiplied by reaction path degeneracy 3.0""")
Identical kinetics comments:
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-6R!H-R
Multiplied by reaction path degeneracy 3.0

Non-identical kinetics! ❌
original:
rxn: C1=CC2C=C[C]1C=C2(49) + [CH]1C2=CC=CC1C=C2(48) <=> C1=CC2C=CC=1C=C2(79) + C1=CC2C=CC(=C1)C2(69) origin: Disproportionation
tested:
rxn: C1=CC2C=C[C]1C=C2(49) + [CH]1C2=CC=CC1C=C2(48) <=> C1=CC2C=CC=1C=C2(79) + C1=CC2C=CC(=C1)C2(69) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): -4.51 -1.87 -0.20 0.96 2.51 3.52 5.03 5.92
k(T): -30.44 -21.32 -15.76 -12.01 -7.22 -4.26 -0.16 2.03

kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(12.01,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 46.5 to 50.2 kJ/mol to match endothermicity of reaction.""")
kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(47.606,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 195.1 to 199.2 kJ/mol to match endothermicity of reaction.""")
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 46.5 to 50.2 kJ/mol to match endothermicity of reaction.
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 195.1 to 199.2 kJ/mol to match endothermicity of reaction.

Non-identical kinetics! ❌
original:
rxn: C1=CC2C=C[C]1C=C2(49) + [CH]1C2=CC=CC1C=C2(48) <=> C1=CC2C=CC=1C=C2(79) + C1=CC2C=CC(=C2)C1(70) origin: Disproportionation
tested:
rxn: C1=CC2C=C[C]1C=C2(49) + [CH]1C2=CC=CC1C=C2(48) <=> C1=CC2C=CC=1C=C2(79) + C1=CC2C=CC(=C2)C1(70) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): -6.18 -3.12 -1.20 0.13 1.88 3.01 4.70 5.67
k(T): -32.11 -22.57 -16.76 -12.84 -7.84 -4.76 -0.49 1.78

kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(14.299,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 56.6 to 59.8 kJ/mol to match endothermicity of reaction.""")
kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(49.895,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 205.2 to 208.8 kJ/mol to match endothermicity of reaction.""")
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 56.6 to 59.8 kJ/mol to match endothermicity of reaction.
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 205.2 to 208.8 kJ/mol to match endothermicity of reaction.

Non-identical kinetics! ❌
original:
rxn: C1=CC2C=C[C]1C=C2(49) + [CH]1C2=CC=CC1C=C2(48) <=> C1=CC2C=CC=1C=C2(79) + C1=CC2=CC(C=C2)C1(71) origin: Disproportionation
tested:
rxn: C1=CC2C=C[C]1C=C2(49) + [CH]1C2=CC=CC1C=C2(48) <=> C1=CC2C=CC=1C=C2(79) + C1=CC2=CC(C=C2)C1(71) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): -8.04 -4.52 -2.32 -0.81 1.18 2.46 4.32 5.39
k(T): -33.97 -23.97 -17.88 -13.77 -8.54 -5.32 -0.86 1.50

kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(16.86,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 65.8 to 70.5 kJ/mol to match endothermicity of reaction.""")
kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(52.457,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 214.4 to 219.5 kJ/mol to match endothermicity of reaction.""")
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 65.8 to 70.5 kJ/mol to match endothermicity of reaction.
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 214.4 to 219.5 kJ/mol to match endothermicity of reaction.

Non-identical kinetics! ❌
original:
rxn: C1=CC2C=C[C]1C=C2(49) + C1=CC2C=C[C]1C=C2(49) <=> C1=CC2C=CC=1C=C2(79) + C1=CC2C=CC1C=C2(82) origin: Disproportionation
tested:
rxn: C1=CC2C=C[C]1C=C2(49) + C1=CC2C=C[C]1C=C2(49) <=> C1=CC2C=CC=1C=C2(79) + C1=CC2C=CC1C=C2(82) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): -4.55 -1.90 -0.23 0.94 2.49 3.50 5.02 5.92
k(T): -30.48 -21.35 -15.79 -12.03 -7.23 -4.28 -0.16 2.03

kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(12.063,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 46.8 to 50.5 kJ/mol to match endothermicity of reaction.""")
kinetics: Arrhenius(A=(17.1699,'cm^3/(mol*s)'), n=3.635, Ea=(47.659,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 3.0 Ea raised from 195.4 to 199.4 kJ/mol to match endothermicity of reaction.""")
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 46.8 to 50.5 kJ/mol to match endothermicity of reaction.
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 3.0
Ea raised from 195.4 to 199.4 kJ/mol to match endothermicity of reaction.

Non-identical kinetics! ❌
original:
rxn: C1=CC2C=C[C]1C=C2(49) + C1=CC2C=C[C]1C=C2(49) <=> C1=CC2C=CC=1C=C2(79) + C1=CC2C=CC1=CC2(83) origin: Disproportionation
tested:
rxn: C1=CC2C=C[C]1C=C2(49) + C1=CC2C=C[C]1C=C2(49) <=> C1=CC2C=CC=1C=C2(79) + C1=CC2C=CC1=CC2(83) origin: Disproportionation

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): 3.96 4.60 5.07 5.43 5.98 6.39 7.11 7.60
k(T): -19.49 -12.98 -9.00 -6.29 -2.81 -0.64 2.42 4.08

kinetics: Arrhenius(A=(51.5097,'cm^3/(mol*s)'), n=3.635, Ea=(1.036,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 9.0""")
kinetics: Arrhenius(A=(51.5097,'cm^3/(mol*s)'), n=3.635, Ea=(33.226,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R Multiplied by reaction path degeneracy 9.0 Ea raised from 133.4 to 139.0 kJ/mol to match endothermicity of reaction.""")
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 9.0
kinetics: Estimated from node Root_Ext-1R!H-R_N-4R->O_Sp-5R!H=1R!H_Ext-4CHNS-R_Ext-4CHNS-R
Multiplied by reaction path degeneracy 9.0
Ea raised from 133.4 to 139.0 kJ/mol to match endothermicity of reaction.

Observables Test Case: Aromatics Comparison

✅ All Observables varied by less than 0.500 on average between old model and new model in all conditions!

aromatics Passed Observable Testing ✅

Regression test liquid_oxidation:

Reference: Execution time (DD:HH:MM:SS): 00:00:01:55
Current: Execution time (DD:HH:MM:SS): 00:00:01:56
Reference: Memory used: 847.46 MB
Current: Memory used: 849.60 MB

liquid_oxidation Passed Core Comparison ✅

Original model has 37 species.
Test model has 37 species. ✅
Original model has 241 reactions.
Test model has 241 reactions. ✅

liquid_oxidation Failed Edge Comparison ❌

Original model has 214 species.
Test model has 214 species. ✅
Original model has 1590 reactions.
Test model has 1593 reactions. ❌
The original model has 2 reactions that the tested model does not have. ❌
rxn: CC(C[CH]COO)OO(115) <=> [OH](22) + CC(CCC=O)OO(116) origin: intra_H_migration
rxn: CC(C[CH]COO)OO(115) <=> [OH](22) + CC(=O)CCCOO(112) origin: intra_H_migration
The tested model has 5 reactions that the original model does not have. ❌
rxn: CC(C[CH]COO)OO(118) <=> CC(CC[CH]OO)OO(133) origin: intra_H_migration
rxn: CC(C[CH]COO)OO(118) <=> C[C](CCCOO)OO(132) origin: intra_H_migration
rxn: CC(CC(C)OO)O[O](90) + CC(CCCOO)O[O](108) <=> oxygen(1) + CC([O])CC(C)OO(110) + CC([O])CCCOO(122) origin: Peroxyl_Disproportionation
rxn: CC(CC(C)OO)O[O](90) + CC(CCCOO)O[O](108) <=> oxygen(1) + CC(=O)CC(C)OO(95) + CC(O)CCCOO(152) origin: Peroxyl_Termination
rxn: CC(CC(C)OO)O[O](90) + CC(CCCOO)O[O](108) <=> oxygen(1) + CC(=O)CCCOO(115) + CC(O)CC(C)OO(143) origin: Peroxyl_Termination

Observables Test Case: liquid_oxidation Comparison

✅ All Observables varied by less than 0.100 on average between old model and new model in all conditions!

liquid_oxidation Passed Observable Testing ✅

Regression test nitrogen:

Reference: Execution time (DD:HH:MM:SS): 00:00:00:58
Current: Execution time (DD:HH:MM:SS): 00:00:01:02
Reference: Memory used: 849.20 MB
Current: Memory used: 849.13 MB

nitrogen Passed Core Comparison ✅

Original model has 41 species.
Test model has 41 species. ✅
Original model has 360 reactions.
Test model has 360 reactions. ✅

nitrogen Failed Edge Comparison ❌

Original model has 133 species.
Test model has 133 species. ✅
Original model has 983 reactions.
Test model has 983 reactions. ✅

Non-identical thermo! ❌
original: O1[C]=N1
tested: O1[C]=N1

Hf(300K) S(300K) Cp(300K) Cp(400K) Cp(500K) Cp(600K) Cp(800K) Cp(1000K) Cp(1500K)
116.46 53.90 11.62 12.71 13.49 13.96 14.14 13.85 13.58
141.64 58.66 12.26 12.27 12.09 11.96 12.26 12.72 12.15

thermo: Thermo group additivity estimation: group(O2s-CdN3d) + group(N3d-OCd) + group(Cd-HN3dO) + ring(Cyclopropene) + radical(CdJ-NdO)
thermo: Thermo group additivity estimation: group(O2s-CdN3d) + group(N3d-OCd) + group(Cd-HN3dO) + ring(oxirene) + radical(CdJ-NdO)

Non-identical kinetics! ❌
original:
rxn: NCO(66) <=> O1[C]=N1(126) origin: Intra_R_Add_Endocyclic
tested:
rxn: NCO(66) <=> O1[C]=N1(126) origin: Intra_R_Add_Endocyclic

k(1bar) 300K 400K 500K 600K 800K 1000K 1500K 2000K
k(T): -49.54 -33.65 -24.16 -17.85 -10.01 -5.35 0.80 3.82
k(T): -66.25 -46.19 -34.19 -26.21 -16.28 -10.36 -2.54 1.31

kinetics: Arrhenius(A=(6.95187e+18,'s^-1'), n=-1.628, Ea=(88.327,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Backbone0_N-2R!H-inRing_N-1R!H-inRing_Sp-2R!H-1R!H""")
kinetics: Arrhenius(A=(6.95187e+18,'s^-1'), n=-1.628, Ea=(111.271,'kcal/mol'), T0=(1,'K'), comment="""Estimated from node Backbone0_N-2R!H-inRing_N-1R!H-inRing_Sp-2R!H-1R!H""")
Identical kinetics comments:
kinetics: Estimated from node Backbone0_N-2R!H-inRing_N-1R!H-inRing_Sp-2R!H-1R!H

Observables Test Case: NC Comparison

✅ All Observables varied by less than 0.200 on average between old model and new model in all conditions!

nitrogen Passed Observable Testing ✅

Regression test oxidation:

Reference: Execution time (DD:HH:MM:SS): 00:00:01:30
Current: Execution time (DD:HH:MM:SS): 00:00:01:48
Reference: Memory used: 747.11 MB
Current: Memory used: 735.98 MB

oxidation Passed Core Comparison ✅

Original model has 59 species.
Test model has 59 species. ✅
Original model has 694 reactions.
Test model has 694 reactions. ✅

oxidation Passed Edge Comparison ✅

Original model has 230 species.
Test model has 230 species. ✅
Original model has 1526 reactions.
Test model has 1526 reactions. ✅

Observables Test Case: Oxidation Comparison

✅ All Observables varied by less than 0.500 on average between old model and new model in all conditions!

oxidation Passed Observable Testing ✅
Errors occurred during observable testing ⚠️ WARNING:root:Initial mole fractions do not sum to one; normalizing.

Regression test sulfur:

Reference: Execution time (DD:HH:MM:SS): 00:00:00:38
Current: Execution time (DD:HH:MM:SS): 00:00:00:39
Reference: Memory used: 845.12 MB
Current: Memory used: 844.79 MB

sulfur Passed Core Comparison ✅

Original model has 27 species.
Test model has 27 species. ✅
Original model has 74 reactions.
Test model has 74 reactions. ✅

sulfur Failed Edge Comparison ❌

Original model has 89 species.
Test model has 89 species. ✅
Original model has 227 reactions.
Test model has 227 reactions. ✅
The original model has 1 reactions that the tested model does not have. ❌
rxn: O(4) + SO2(15) (+N2) <=> SO3(16) (+N2) origin: primarySulfurLibrary
The tested model has 1 reactions that the original model does not have. ❌
rxn: O(4) + SO2(15) (+N2) <=> SO3(16) (+N2) origin: primarySulfurLibrary

Observables Test Case: SO2 Comparison

✅ All Observables varied by less than 0.100 on average between old model and new model in all conditions!

sulfur Passed Observable Testing ✅

Regression test superminimal:

Reference: Execution time (DD:HH:MM:SS): 00:00:00:24
Current: Execution time (DD:HH:MM:SS): 00:00:00:24
Reference: Memory used: 935.25 MB
Current: Memory used: 936.66 MB

superminimal Passed Core Comparison ✅

Original model has 13 species.
Test model has 13 species. ✅
Original model has 21 reactions.
Test model has 21 reactions. ✅

superminimal Passed Edge Comparison ✅

Original model has 18 species.
Test model has 18 species. ✅
Original model has 28 reactions.
Test model has 28 reactions. ✅

Regression test RMS_constantVIdealGasReactor_superminimal:

Reference: Execution time (DD:HH:MM:SS): 00:00:02:18
Current: Execution time (DD:HH:MM:SS): 00:00:02:15
Reference: Memory used: 2254.52 MB
Current: Memory used: 2277.33 MB

RMS_constantVIdealGasReactor_superminimal Passed Core Comparison ✅

Original model has 13 species.
Test model has 13 species. ✅
Original model has 19 reactions.
Test model has 19 reactions. ✅

RMS_constantVIdealGasReactor_superminimal Passed Edge Comparison ✅

Original model has 13 species.
Test model has 13 species. ✅
Original model has 19 reactions.
Test model has 19 reactions. ✅

Observables Test Case: RMS_constantVIdealGasReactor_superminimal Comparison

✅ All Observables varied by less than 0.100 on average between old model and new model in all conditions!

RMS_constantVIdealGasReactor_superminimal Passed Observable Testing ✅

Regression test RMS_CSTR_liquid_oxidation:

Reference: Execution time (DD:HH:MM:SS): 00:00:24:09
Current: Execution time (DD:HH:MM:SS): 00:00:44:34
Reference: Memory used: 3423.04 MB
Current: Memory used: 2566.69 MB

RMS_CSTR_liquid_oxidation Failed Core Comparison ❌

Original model has 35 species.
Test model has 35 species. ✅
Original model has 180 reactions.
Test model has 194 reactions. ❌
The original model has 4 species that the tested model does not have. ❌
spc: CCC([O])CC(44)
spc: [CH2]CCCCOO(66)
spc: CCCCCO
spc: CC1CC(C)O1(87)
The tested model has 4 species that the original model does not have. ❌
spc: CCCC(C)O(47)
spc: C=CC[CH]C(64)
spc: [CH]=CCCC(69)
spc: CCCC=O(88)
The original model has 31 reactions that the tested model does not have. ❌
rxn: [OH](24) + CCCCC[O](79) <=> CCCCCOO(78) origin: R_Recombination
rxn: [O]O(13) + CCCCCO[O](61) <=> oxygen(1) + [OH](24) + CCCCC[O](79) origin: Peroxyl_Disproportionation
rxn: CCCC(C)O[O](21) + CCCCCO[O](61) <=> oxygen(1) + CCCC(C)[O](41) + CCCCC[O](79) origin: Peroxyl_Disproportionation
rxn: CCCC(C)OO(26) + CCCCCOO(78) <=> O(42) + CCCCC[O](79) + CCCC(C)O[O](21) origin: Bimolec_Hydroperoxide_Decomposition
rxn: CCC(CC)OO(27) + CCCCCOO(78) <=> O(42) + CCCCC[O](79) + CCC(CC)O[O](22) origin: Bimolec_Hydroperoxide_Decomposition
rxn: CCCCCO[O](61) + CCCCCO[O](61) <=> oxygen(1) + CCCCC[O](79) + CCCCC[O](79) origin: Peroxyl_Disproportionation
rxn: CCCCCOO(78) + CCCCCOO(78) <=> O(42) + CCCCC[O](79) + CCCCCO[O](61) origin: Bimolec_Hydroperoxide_Decomposition
rxn: OO(23) + CCCCCOO(78) <=> [O]O(13) + O(42) + CCCCC[O](79) origin: Bimolec_Hydroperoxide_Decomposition
rxn: [O]O(13) + CCC(CC)O[O](22) <=> oxygen(1) + [OH](24) + CCC([O])CC(44) origin: Peroxyl_Disproportionation
rxn: CCC(CC)O[O](22) + CCCC(C)O[O](21) <=> oxygen(1) + CCC([O])CC(44) + CCCC(C)[O](41) origin: Peroxyl_Disproportionation
rxn: CCC(CC)O[O](22) + CCC(CC)O[O](22) <=> oxygen(1) + CCC([O])CC(44) + CCC([O])CC(44) origin: Peroxyl_Disproportionation
rxn: [OH](24) + CCC([O])CC(44) <=> CCC(CC)OO(27) origin: R_Recombination
rxn: CCC(CC)OO(27) + CCCC(C)OO(26) <=> O(42) + CCC([O])CC(44) + CCCC(C)O[O](21) origin: Bimolec_Hydroperoxide_Decomposition
rxn: CCC(CC)OO(27) + CCC(CC)OO(27) <=> O(42) + CCC([O])CC(44) + CCC(CC)O[O](22) origin: Bimolec_Hydroperoxide_Decomposition
rxn: CCC(CC)O[O](22) + CCCCCO[O](61) <=> oxygen(1) + CCC([O])CC(44) + CCCCC[O](79) origin: Peroxyl_Disproportionation
rxn: CCC(CC)OO(27) + CCCCCOO(78) <=> O(42) + CCC([O])CC(44) + CCCCCO[O](61) origin: Bimolec_Hydroperoxide_Decomposition
rxn: OO(23) + CCC(CC)OO(27) <=> [O]O(13) + O(42) + CCC([O])CC(44) origin: Bimolec_Hydroperoxide_Decomposition
rxn: CCCCCO[O](61) <=> [CH2]CCCCOO(66) origin: intra_H_migration
rxn: [O]O(13) + [CH2]CCCCOO(66) <=> oxygen(1) + CCCCCOO(78) origin: H_Abstraction
rxn: OO(23) + [CH2]CCCCOO(66) <=> [O]O(13) + CCCCCOO(78) origin: H_Abstraction
rxn: [CH2]CCCCOO(66) + pentane(2) <=> C[CH]CCC(11) + CCCCCOO(78) origin: H_Abstraction
rxn: [CH2]CCCCOO(66) + pentane(2) <=> CC[CH]CC(7) + CCCCCOO(78) origin: H_Abstraction
rxn: [CH2]CCCCOO(66) + CCCC(C)OO(26) <=> CCCC(C)O[O](21) + CCCCCOO(78) origin: H_Abstraction
rxn: [CH2]CCCCOO(66) + CCC(CC)OO(27) <=> CCC(CC)O[O](22) + CCCCCOO(78) origin: H_Abstraction
rxn: [CH2]CCCCOO(66) + pentane(2) <=> [CH2]CCCC(12) + CCCCCOO(78) origin: H_Abstraction
rxn: [CH2]CCCCOO(66) + CCCCCOO(78) <=> CCCCCO[O](61) + CCCCCOO(78) origin: H_Abstraction
rxn: [CH2]CCCC(12) + [CH2]CCCCOO(66) <=> C=CCCC(17) + CCCCCOO(78) origin: Disproportionation
rxn: C[CH]CCC(11) + [CH2]CCCCOO(66) <=> C=CCCC(17) + CCCCCOO(78) origin: Disproportionation
rxn: [OH](24) + CCCCCOO(78) <=> O(42) + [CH2]CCCCOO(66) origin: H_Abstraction
rxn: [CH2]CCCCOO(66) + CCCC(C)OO(26) <=> C[CH]CC(C)OO(34) + CCCCCOO(78) origin: H_Abstraction
rxn: C[CH]CC(C)OO(34) <=> [OH](24) + CC1CC(C)O1(87) origin: Cyclic_Ether_Formation
The tested model has 45 reactions that the original model does not have. ❌
rxn: [CH3](10) + CCCC=O(88) <=> CCCC(C)[O](44) origin: R_Addition_MultipleBond
rxn: CCCC(C)[O](44) + pentane(2) <=> CC[CH]CC(7) + CCCC(C)O(47) origin: H_Abstraction
rxn: CCCC(C)[O](44) + pentane(2) <=> C[CH]CCC(11) + CCCC(C)O(47) origin: H_Abstraction
rxn: CCCC(C)[O](44) + pentane(2) <=> [CH2]CCCC(12) + CCCC(C)O(47) origin: H_Abstraction
rxn: C[CH]CCC(11) + CCCC(C)[O](44) <=> C=CCCC(17) + CCCC(C)O(47) origin: Disproportionation
rxn: [O]O(13) + CCCC(C)[O](44) <=> oxygen(1) + CCCC(C)O(47) origin: H_Abstraction
rxn: CCCC(C)[O](44) + CCC(CC)OO(27) <=> CCC(CC)O[O](22) + CCCC(C)O(47) origin: H_Abstraction
rxn: [CH2]CCCC(12) + CCCC(C)[O](44) <=> C=CCCC(17) + CCCC(C)O(47) origin: Disproportionation
rxn: CCCC(C)[O](44) + CCCC(C)OO(24) <=> CCCC(C)O[O](20) + CCCC(C)O(47) origin: H_Abstraction
rxn: CCCC(C)[O](44) + CCCC(C)OO(24) <=> C[CH]CC(C)OO(37) + CCCC(C)O(47) origin: H_Abstraction
rxn: O(42) + C=CCCC(17) <=> CCCC(C)O(47) origin: 1,3_Insertion_ROR
rxn: [OH](25) + CCCC(C)O(47) <=> O(42) + CCCC(C)[O](44) origin: H_Abstraction
rxn: CCCC(C)[O](44) + CCCCCOO(78) <=> CCCCCO[O](61) + CCCC(C)O(47) origin: H_Abstraction
rxn: [O]O(13) + CCCC(C)O(47) <=> OO(23) + CCCC(C)[O](44) origin: H_Abstraction
rxn: [O]O(13) + C=CC[CH]C(64) <=> oxygen(1) + C=CCCC(17) origin: H_Abstraction
rxn: OO(23) + C=CC[CH]C(64) <=> [O]O(13) + C=CCCC(17) origin: H_Abstraction
rxn: C=CC[CH]C(64) + [CH2]CCCC(12) <=> C=CCCC(17) + C=CCCC(17) origin: Disproportionation
rxn: C=CC[CH]C(64) + C[CH]CCC(11) <=> C=CCCC(17) + C=CCCC(17) origin: Disproportionation
rxn: C=CC[CH]C(64) + pentane(2) <=> C=CCCC(17) + C[CH]CCC(11) origin: H_Abstraction
rxn: C=CCCC(17) + CC[CH]CC(7) <=> C=CC[CH]C(64) + pentane(2) origin: H_Abstraction
rxn: C=CC[CH]C(64) + CCC(CC)OO(27) <=> C=CCCC(17) + CCC(CC)O[O](22) origin: H_Abstraction
rxn: C=CC[CH]C(64) + CCCC(C)OO(24) <=> C=CCCC(17) + CCCC(C)O[O](20) origin: H_Abstraction
rxn: C=CCCC(17) + [CH2]CCCC(12) <=> C=CC[CH]C(64) + pentane(2) origin: H_Abstraction
rxn: C=CC[CH]C(64) + CCCCCOO(78) <=> C=CCCC(17) + CCCCCO[O](61) origin: H_Abstraction
rxn: [OH](25) + C=CCCC(17) <=> O(42) + C=CC[CH]C(64) origin: H_Abstraction
rxn: C=CCCC(17) + CCCC(C)[O](44) <=> C=CC[CH]C(64) + CCCC(C)O(47) origin: H_Abstraction
rxn: C=CC[CH]C(64) + CCCC(C)OO(24) <=> C=CCCC(17) + C[CH]CC(C)OO(37) origin: H_Abstraction
rxn: oxygen(1) + C=CCCC(17) <=> [O]O(13) + [CH]=CCCC(69) origin: H_Abstraction
rxn: OO(23) + [CH]=CCCC(69) <=> [O]O(13) + C=CCCC(17) origin: H_Abstraction
rxn: [CH]=CCCC(69) + [CH2]CCCC(12) <=> C=CCCC(17) + C=CCCC(17) origin: Disproportionation
rxn: [CH]=CCCC(69) + C[CH]CCC(11) <=> C=CCCC(17) + C=CCCC(17) origin: Disproportionation
rxn: [CH]=CCCC(69) + pentane(2) <=> C=CCCC(17) + C[CH]CCC(11) origin: H_Abstraction
rxn: [CH]=CCCC(69) + pentane(2) <=> C=CCCC(17) + CC[CH]CC(7) origin: H_Abstraction
rxn: [CH]=CCCC(69) + CCC(CC)OO(27) <=> C=CCCC(17) + CCC(CC)O[O](22) origin: H_Abstraction
rxn: [CH]=CCCC(69) + CCCC(C)OO(24) <=> C=CCCC(17) + CCCC(C)O[O](20) origin: H_Abstraction
rxn: [CH]=CCCC(69) + pentane(2) <=> C=CCCC(17) + [CH2]CCCC(12) origin: H_Abstraction
rxn: [CH]=CCCC(69) + CCCCCOO(78) <=> C=CCCC(17) + CCCCCO[O](61) origin: H_Abstraction
rxn: [OH](25) + C=CCCC(17) <=> O(42) + [CH]=CCCC(69) origin: H_Abstraction
rxn: [CH]=CCCC(69) + CCCC(C)O(47) <=> C=CCCC(17) + CCCC(C)[O](44) origin: H_Abstraction
rxn: [CH]=CCCC(69) + CCCC(C)OO(24) <=> C=CCCC(17) + C[CH]CC(C)OO(37) origin: H_Abstraction
rxn: C[CH]CCC(11) + CCCC(C)[O](44) <=> CC=CCC(16) + CCCC(C)O(47) origin: Disproportionation
rxn: CC[CH]CC(7) + CCCC(C)[O](44) <=> CC=CCC(16) + CCCC(C)O(47) origin: Disproportionation
rxn: CCCC(C)[O](44) + C[CH]CC(C)OO(37) <=> CC=CC(C)OO(97) + CCCC(C)O(47) origin: Disproportionation
rxn: CCCC(C)[O](44) + CCC(CC)OO(27) <=> [CH2]CC(CC)OO(32) + CCCC(C)O(47) origin: H_Abstraction
rxn: CCCC(C)[O](44) + CCCCCOO(78) <=> C[CH]CCCOO(75) + CCCC(C)O(47) origin: H_Abstraction

RMS_CSTR_liquid_oxidation Failed Edge Comparison ❌

Original model has 107 species.
Test model has 112 species. ❌
Original model has 549 reactions.
Test model has 558 reactions. ❌
The tested model has 5 species that the original model does not have. ❌
spc: [O]OOO(21)
spc: [O]OO(28)
spc: CCC(CC)OOOO
spc: CCCC(C)OOOO
spc: CCCCCOOOO
The tested model has 9 reactions that the original model does not have. ❌
rxn: oxygen(1) + [O]O(13) <=> [O]OOO(21) origin: R_Recombination
rxn: [O]OO(28) + [O]OO(28) <=> oxygen(1) + [O]O(13) + [O]O(13) origin: Peroxyl_Disproportionation
rxn: oxygen(1) + CCC(CC)O[O](22) <=> CCC(CC)OOO[O](39) origin: R_Recombination
rxn: oxygen(1) + CCCC(C)O[O](20) <=> CCCC(C)OOO[O](40) origin: R_Recombination
rxn: [O]OO(28) + CCC(CC)OO[O](48) <=> oxygen(1) + [O]O(13) + CCC(CC)O[O](22) origin: Peroxyl_Disproportionation
rxn: [O]OO(28) + CCCC(C)OO[O](49) <=> oxygen(1) + [O]O(13) + CCCC(C)O[O](20) origin: Peroxyl_Disproportionation
rxn: oxygen(1) + CCCCCO[O](61) <=> CCCCCOOO[O](77) origin: R_Recombination
rxn: oxygen(1) + [OH](25) <=> [O]OO(28) origin: R_Recombination
rxn: [O]OO(28) + CCCC(C)O[O](20) <=> oxygen(1) + [O]O(13) + CCCC(C)[O](44) origin: Peroxyl_Disproportionation

Observables Test Case: RMS_CSTR_liquid_oxidation Comparison

✅ All Observables varied by less than 0.100 on average between old model and new model in all conditions!

RMS_CSTR_liquid_oxidation Passed Observable Testing ✅

Regression test fragment:

Reference: Execution time (DD:HH:MM:SS): 00:00:00:30
Current: Execution time (DD:HH:MM:SS): 00:00:00:30
Reference: Memory used: 701.12 MB
Current: Memory used: 700.67 MB

fragment Passed Core Comparison ✅

Original model has 10 species.
Test model has 10 species. ✅
Original model has 2 reactions.
Test model has 2 reactions. ✅

fragment Passed Edge Comparison ✅

Original model has 33 species.
Test model has 33 species. ✅
Original model has 47 reactions.
Test model has 47 reactions. ✅

Observables Test Case: fragment Comparison

✅ All Observables varied by less than 0.100 on average between old model and new model in all conditions!

fragment Passed Observable Testing ✅
Errors occurred during observable testing ⚠️ WARNING:root:Initial mole fractions do not sum to one; normalizing.

Regression test RMS_constantVIdealGasReactor_fragment:

Reference: Execution time (DD:HH:MM:SS): 00:00:02:42
Current: Execution time (DD:HH:MM:SS): 00:00:02:42
Reference: Memory used: 2604.24 MB
Current: Memory used: 2485.86 MB

RMS_constantVIdealGasReactor_fragment Passed Core Comparison ✅

Original model has 10 species.
Test model has 10 species. ✅
Original model has 2 reactions.
Test model has 2 reactions. ✅

RMS_constantVIdealGasReactor_fragment Passed Edge Comparison ✅

Original model has 27 species.
Test model has 27 species. ✅
Original model has 24 reactions.
Test model has 24 reactions. ✅

Observables Test Case: RMS_constantVIdealGasReactor_fragment Comparison

✅ All Observables varied by less than 0.100 on average between old model and new model in all conditions!

RMS_constantVIdealGasReactor_fragment Passed Observable Testing ✅
Errors occurred during observable testing ⚠️ WARNING:root:Initial mole fractions do not sum to one; normalizing.

Regression test minimal_surface:

Reference: Execution time (DD:HH:MM:SS): 00:00:00:31
Current: Execution time (DD:HH:MM:SS): 00:00:00:31
Reference: Memory used: 851.43 MB
Current: Memory used: 851.14 MB

minimal_surface Passed Core Comparison ✅

Original model has 11 species.
Test model has 11 species. ✅
Original model has 3 reactions.
Test model has 3 reactions. ✅

minimal_surface Passed Edge Comparison ✅

Original model has 38 species.
Test model has 38 species. ✅
Original model has 38 reactions.
Test model has 38 reactions. ✅

Observables Test Case: minimal_surface Comparison

✅ All Observables varied by less than 0.500 on average between old model and new model in all conditions!

minimal_surface Passed Observable Testing ✅

beep boop this comment was written by a bot 🤖

@github-actions github-actions bot removed the stale stale issue/PR as determined by actions bot label Jul 21, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Dissociative adsorption generates wrong flux pairs?
1 participant