|
40 | 40 | "b = torch.Tensor([1 if i % 2 == 0 else 0 for i in range(latent_size)])\n",
|
41 | 41 | "flows = []\n",
|
42 | 42 | "for i in range(K):\n",
|
43 |
| - " s = nf.nets.MLP([latent_size, 2 * latent_size, latent_size], init_zeros=True)#, output_fn=\"tanh\", output_scale=3.)\n", |
44 |
| - " t = nf.nets.MLP([latent_size, 2 * latent_size, latent_size], init_zeros=True)#, output_fn=\"tanh\", output_scale=3.)\n", |
| 43 | + " s = nf.nets.MLP([latent_size, 2 * latent_size, latent_size], init_zeros=True)\n", |
| 44 | + " t = nf.nets.MLP([latent_size, 2 * latent_size, latent_size], init_zeros=True)\n", |
45 | 45 | " if i % 2 == 0:\n",
|
46 | 46 | " flows += [nf.flows.MaskedAffineFlow(b, s, t)]\n",
|
47 | 47 | " else:\n",
|
|
135 | 135 | " log_prob = nfm.log_prob(zz).to('cpu').view(*xx.shape)\n",
|
136 | 136 | " prob = torch.exp(log_prob)\n",
|
137 | 137 | " prob[torch.isnan(prob)] = 0\n",
|
138 |
| - " #np.save('/scratch2/vs488/lectures/aml/optimization/log/no_annealing_real_nvp_prob_%06i.npy' % (it + 1),\n", |
139 |
| - " # prob.data.numpy())\n", |
140 | 138 | "\n",
|
141 | 139 | " plt.figure(figsize=(15, 15))\n",
|
142 | 140 | " plt.pcolormesh(xx, yy, prob.data.numpy())\n",
|
|
167 | 165 | "plt.gca().set_aspect('equal', 'box')\n",
|
168 | 166 | "plt.show()"
|
169 | 167 | ]
|
170 |
| - }, |
171 |
| - { |
172 |
| - "cell_type": "code", |
173 |
| - "execution_count": null, |
174 |
| - "metadata": {}, |
175 |
| - "outputs": [], |
176 |
| - "source": [] |
177 | 168 | }
|
178 | 169 | ],
|
179 | 170 | "metadata": {
|
180 | 171 | "kernelspec": {
|
181 |
| - "display_name": "Python 3", |
| 172 | + "display_name": "Python 3 (ipykernel)", |
182 | 173 | "language": "python",
|
183 | 174 | "name": "python3"
|
184 | 175 | },
|
|
192 | 183 | "name": "python",
|
193 | 184 | "nbconvert_exporter": "python",
|
194 | 185 | "pygments_lexer": "ipython3",
|
195 |
| - "version": "3.7.6" |
| 186 | + "version": "3.8.11" |
196 | 187 | }
|
197 | 188 | },
|
198 | 189 | "nbformat": 4,
|
|
0 commit comments