Skip to content

Modify the Gradio demo to showcase the functionality. #61

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
208 changes: 117 additions & 91 deletions demo/app_januspro.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,35 +11,58 @@
# import spaces # Import spaces for ZeroGPU compatibility


# Load model and processor
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
language_config=language_config,
trust_remote_code=True)
if torch.cuda.is_available():
vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
else:
vl_gpt = vl_gpt.to(torch.float16)

vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
# Global variables to store model and processor (initially for 7B)
vl_gpt = None
vl_chat_processor = None
tokenizer = None
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
current_model_path = "deepseek-ai/Janus-Pro-7B" # Default model

def load_model_components(model_path):
global vl_gpt, vl_chat_processor, tokenizer, current_model_path # Declare current_model_path as global here

if vl_gpt is not None and current_model_path == model_path:
print(f"Using cached model: {model_path}")
return vl_gpt, vl_chat_processor, tokenizer

print(f"Loading model: {model_path}")
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt_local = AutoModelForCausalLM.from_pretrained(model_path,
language_config=language_config,
trust_remote_code=True)
if torch.cuda.is_available():
vl_gpt_local = vl_gpt_local.to(torch.bfloat16).cuda()
else:
vl_gpt_local = vl_gpt_local.to(torch.float16)

vl_chat_processor_local = VLChatProcessor.from_pretrained(model_path)
tokenizer_local = vl_chat_processor_local.tokenizer

vl_gpt = vl_gpt_local
vl_chat_processor = vl_chat_processor_local
tokenizer = tokenizer_local
current_model_path = model_path
print(f"Model loaded: {model_path}")
return vl_gpt, vl_chat_processor, tokenizer


@torch.inference_mode()
# @spaces.GPU(duration=120)
# @spaces.GPU(duration=120)
# Multimodal Understanding function
def multimodal_understanding(image, question, seed, top_p, temperature):
def multimodal_understanding(model_name, image, question, seed, top_p, temperature):
# Load model based on selection
load_model_components(model_name)

# Clear CUDA cache before generating
torch.cuda.empty_cache()

# set seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)

conversation = [
{
"role": "<|User|>",
Expand All @@ -48,15 +71,15 @@ def multimodal_understanding(image, question, seed, top_p, temperature):
},
{"role": "<|Assistant|>", "content": ""},
]

pil_images = [Image.fromarray(image)]
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)


inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)

outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
Expand All @@ -69,7 +92,7 @@ def multimodal_understanding(image, question, seed, top_p, temperature):
temperature=temperature,
top_p=top_p,
)

answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer

Expand All @@ -84,7 +107,7 @@ def generate(input_ids,
patch_size: int = 16):
# Clear CUDA cache before generating
torch.cuda.empty_cache()

tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
Expand Down Expand Up @@ -113,7 +136,6 @@ def generate(input_ids,
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)



patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, width // patch_size, height // patch_size])
Expand All @@ -133,10 +155,10 @@ def unpack(dec, width, height, parallel_size=5):

@torch.inference_mode()
# @spaces.GPU(duration=120) # Specify a duration to avoid timeout
def generate_image(prompt,
seed=None,
guidance=5,
t2i_temperature=1.0):
def generate_image(model_name, prompt, seed, guidance, t2i_temperature, parallel_size_slider):
# Load model based on selection
load_model_components(model_name)

# Clear CUDA cache and avoid tracking gradients
torch.cuda.empty_cache()
# Set the seed for reproducible results
Expand All @@ -146,16 +168,16 @@ def generate_image(prompt,
np.random.seed(seed)
width = 384
height = 384
parallel_size = 5
parallel_size = int(parallel_size_slider) # Use slider value for parallel_size

with torch.no_grad():
messages = [{'role': '<|User|>', 'content': prompt},
{'role': '<|Assistant|>', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt='')
text = text + vl_chat_processor.image_start_tag

input_ids = torch.LongTensor(tokenizer.encode(text))
output, patches = generate(input_ids,
width // 16 * 16,
Expand All @@ -169,75 +191,79 @@ def generate_image(prompt,
parallel_size=parallel_size)

return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS) for i in range(parallel_size)]


# Gradio interface
with gr.Blocks() as demo:
gr.Markdown(value="# Multimodal Understanding")
with gr.Row():
image_input = gr.Image()
with gr.Column():
question_input = gr.Textbox(label="Question")
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")

understanding_button = gr.Button("Chat")
understanding_output = gr.Textbox(label="Response")

examples_inpainting = gr.Examples(
label="Multimodal Understanding examples",
examples=[
[
"explain this meme",
"images/doge.png",
gr.Markdown(value="# Multimodal Model Demo: Janus-Pro-7B & 1B")

model_selector = gr.Dropdown(
["deepseek-ai/Janus-Pro-7B", "deepseek-ai/Janus-Pro-1B"],
value="deepseek-ai/Janus-Pro-7B", label="Select Model"
)

with gr.Tab("Multimodal Understanding"):
with gr.Row():
image_input = gr.Image()
with gr.Column():
question_input = gr.Textbox(label="Question")
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")

understanding_button = gr.Button("Chat")
understanding_output = gr.Textbox(label="Response")

examples_inpainting = gr.Examples(
label="Multimodal Understanding examples",
examples=[
[
"explain this meme",
"images/doge.png",
],
[
"Convert the formula into latex code.",
"images/equation.png",
],
],
[
"Convert the formula into latex code.",
"images/equation.png",
inputs=[question_input, image_input],
)

with gr.Tab("Text-to-Image Generation"):
with gr.Row():
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature")
parallel_size_slider = gr.Slider(minimum=1, maximum=5, value=5, step=1, label="Parallel Size") # New slider

prompt_input = gr.Textbox(label="Prompt. (Prompt in more detail can help produce better images!)")
seed_input = gr.Number(label="Seed (Optional)", precision=0, value=12345)

generation_button = gr.Button("Generate Images")

image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)

examples_t2i = gr.Examples(
label="Text to image generation examples.",
examples=[
"Master shifu racoon wearing drip attire as a street gangster.",
"The face of a beautiful girl",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A glass of red wine on a reflective surface.",
"A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
"The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
],
],
inputs=[question_input, image_input],
)


gr.Markdown(value="# Text-to-Image Generation")



with gr.Row():
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature")

prompt_input = gr.Textbox(label="Prompt. (Prompt in more detail can help produce better images!)")
seed_input = gr.Number(label="Seed (Optional)", precision=0, value=12345)

generation_button = gr.Button("Generate Images")

image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)

examples_t2i = gr.Examples(
label="Text to image generation examples.",
examples=[
"Master shifu racoon wearing drip attire as a street gangster.",
"The face of a beautiful girl",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A glass of red wine on a reflective surface.",
"A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
"The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
],
inputs=prompt_input,
)

inputs=prompt_input,
)

understanding_button.click(
multimodal_understanding,
inputs=[image_input, question_input, und_seed_input, top_p, temperature],
inputs=[model_selector, image_input, question_input, und_seed_input, top_p, temperature], # Added model_selector
outputs=understanding_output
)

generation_button.click(
fn=generate_image,
inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature],
inputs=[model_selector, prompt_input, seed_input, cfg_weight_input, t2i_temperature, parallel_size_slider], # Added model_selector and parallel_size_slider
outputs=image_output
)

Expand Down