This repository contains the code and documentation for my Bachelor's Thesis in Economics and Advanced Quantitative Methods at Universitat Pompeu Fabra. The project focuses on estimating the Value at Risk (VaR) of financial instruments using the Black-Scholes model, while comparing how different volatility modeling approaches affect the VaR outcome.
- Ferran García Rovira
- Arnau Reig Caballeria
- Miquel Muñoz García-Ramos
The goal is to analyze the predictive power, robustness, and practical implications of estimating volatility using:
- Black Scholes
- Jump Diffusion models
- SABR model
- Rough / Fractional volatility models
We evaluate how these affect VaR estimation based on real market data.
- Theoretical derivation of VaR using the Black-Scholes framework.
- Implementation of:
- Jump Diffusion Models (Merton and Kou)
- SABR Model
- Rough Volatility (using fractional Brownian motion)
- Empirical estimation of volatility using Python.
- Sensitivity analysis and robustness checks of VaR predictions and model performance.
/data/ # Market data used for simulations
/report/ # Final thesis document and LaTeX drafts
/results/ # Visualizations and model outputs
main.py # Script to execute full VaR analysis
README.md # Project overview and instructions
You must have Python 3.9+ installed.
git clone https://github.com/ferrangarciarovira/VaR-Volatility-Models.git
cd VaR-Volatility-Models
python -m venv env
env\Scripts\activate # Windows
# source env/bin/activate # Mac/Linux
pip install -r requirements.txt
pip install notebook
jupyter notebook