Skip to content

Fix minor issues in docs #3275

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Aug 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/htmldoc/neurons/exact-integration.rst
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,9 @@ The leaky integrate-and fire model
In the leaky integrate-and-fire model, the memory problem is solved by adding a "leak" term :math:`\frac{-1}{R}V` (:math:`R` is the resistance and :math:`\tau=RC`) to the membrane potential:

.. math::
:label: membrane

\frac{dV}{dt}=\frac{-1}{\tau}V+\frac{1}{C}I.
:label: membrane

This reflects the diffusion of ions that occurs through the membrane when some equilibrium is not reached in the cell.

Expand Down
1 change: 1 addition & 0 deletions doc/htmldoc/synapses/connectivity_concepts.rst
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,7 @@ Projections are created in NEST with the :py:func:`.Connect` function:
nest.Connect(pre, post)
nest.Connect(pre, post, conn_spec)
nest.Connect(pre, post, conn_spec, syn_spec)
nest.Connect(pre, post, conn_spec, syn_spec, return_synapsecollection=True)

In the simplest case, the function just takes the ``NodeCollections`` ``pre`` and ``post``, defining the nodes of
origin (`sources`) and termination (`targets`) for the connections to be established with the default rule ``all-to-all`` and the synapse model :ref:`static_synapse`.
Expand Down
2 changes: 1 addition & 1 deletion doc/htmldoc/synapses/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ Guides on using synapses in NEST

.. grid:: 1 1 2 2

.. grid-item-card:: Managing coonnections
.. grid-item-card:: Managing coonnections

* :ref:`connectivity_concepts`
* :ref:`connection_generator`
Expand Down
34 changes: 21 additions & 13 deletions models/iaf_bw_2001.h
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ The membrane potential and synaptic variables evolve according to
I_\mathrm{NMDA} &= \frac{(V(t) - V_E)}{1+[\mathrm{Mg^{2+}}]\mathrm{exp}(-0.062V(t))/3.57}\sum_{j \in \Gamma_\mathrm{ex}}^{N_E}w_jS_{j,\mathrm{NMDA}}(t) \\[3ex]
I_\mathrm{GABA} &= (V(t) - V_I)\sum_{j \in \Gamma_\mathrm{in}}^{N_E}w_jS_{j,\mathrm{GABA}}(t) \\[5ex]
\frac{dS_{j,\mathrm{AMPA}}}{dt} &= -\frac{j,S_{\mathrm{AMPA}}}{\tau_\mathrm{AMPA}}+\sum_{k \in \Delta_j} \delta (t - t_j^k) \\[3ex]
\frac{dS_{j,\mathrm{GABA}}}{dt} &= -\frac{S_{j,\mathrm{GABA}}}{\tau_\mathrm{GABA}} + \sum_{k \in \Delta_j} \delta (t - t_j^k) \\[3ex]
\frac{dS_{j,\mathrm{GABA}}}{dt} &= -\frac{S_{j,\mathrm{GABA}}}{\tau_\mathrm{GABA}} + \sum_{k \in \Delta_j} \delta (t - t_j^k) \\[3ex]
\frac{dS_{j,\mathrm{NMDA}}}{dt} &= -\frac{S_{j,\mathrm{NMDA}}}{\tau_\mathrm{NMDA,decay}} + \sum_{k \in \Delta_j} (k_0 + k_1 S(t)) \delta (t - t_j^k) \\[3ex]

where :math:`\Gamma_\mathrm{ex}` and :math:`\Gamma_\mathrm{in}` are index sets for presynaptic excitatory and inhibitory neurons respectively, and :math:`\Delta_j` is an index set for the spike times of neuron :math:`j`.
Expand All @@ -105,6 +105,8 @@ The specification of this model differs slightly from the one in [1]_. The param
:math:`g_\mathrm{GABA}`, and :math:`g_\mathrm{NMDA}` have been absorbed into the respective synaptic weights.
Additionally, the synapses from the external population are not separated from the recurrent AMPA-synapses.

See also [2]_ and [3]_.

For more implementation details and a comparison to the exact version, see:

- `Brunel_Wang_2001_Model_Approximation <../model_details/Brunel_Wang_2001_Model_Approximation.ipynb>`_
Expand All @@ -118,16 +120,16 @@ The following parameters can be set in the status dictionary.
**Parameter** **Default** **Math equivalent** **Description**
=================== ================== ================================= ========================================================================
``E_L`` -70.0 mV :math:`E_\mathrm{L}` Leak reversal potential
``E_ex`` 0.0 mV :math:`E_\mathrm{ex}` Excitatory reversal potential
``E_in`` -70.0 mV :math:`E_\mathrm{in}` Inhibitory reversal potential
``V_th`` -55.0 mV :math:`V_\mathrm{th}` Spike threshold
``E_ex`` 0.0 mV :math:`E_\mathrm{ex}` Excitatory reversal potential
``E_in`` -70.0 mV :math:`E_\mathrm{in}` Inhibitory reversal potential
``V_th`` -55.0 mV :math:`V_\mathrm{th}` Spike threshold
``V_reset`` -60.0 mV :math:`V_\mathrm{reset}` Reset potential of the membrane
``C_m`` 250.0 pF :math:`C_\mathrm{m}` Capacitance of the membrane
``g_L`` 25.0 nS :math:`g_\mathrm{L}` Leak conductance
``t_ref`` 2.0 ms :math:`t_\mathrm{ref}` Duration of refractory period
``C_m`` 250.0 pF :math:`C_\mathrm{m}` Capacitance of the membrane
``g_L`` 25.0 nS :math:`g_\mathrm{L}` Leak conductance
``t_ref`` 2.0 ms :math:`t_\mathrm{ref}` Duration of refractory period
``tau_AMPA`` 2.0 ms :math:`\tau_\mathrm{AMPA}` Time constant of AMPA synapse
``tau_GABA`` 5.0 ms :math:`\tau_\mathrm{GABA}` Time constant of GABA synapse
``tau_rise_NMDA`` 2.0 ms :math:`\tau_\mathrm{NMDA,rise}` Rise time constant of NMDA synapse
``tau_rise_NMDA`` 2.0 ms :math:`\tau_\mathrm{NMDA,rise}` Rise time constant of NMDA synapse
``tau_decay_NMDA`` 100.0 ms :math:`\tau_\mathrm{NMDA,decay}` Decay time constant of NMDA synapse
``alpha`` 0.5 ms^{-1} :math:`\alpha` Rise-time coupling strength for NMDA synapse
``conc_Mg2`` 1.0 mM :math:`[\mathrm{Mg}^+]` Extracellular magnesium concentration
Expand All @@ -140,9 +142,9 @@ The following state variables evolve during simulation and are available either
**State variable** **Initial value** **Math equivalent** **Description**
================== ================= ========================== =================================
``V_m`` -70 mV :math:`V_{\mathrm{m}}` Membrane potential
``s_AMPA`` 0 :math:`s_\mathrm{AMPA}` AMPA gating variable
``s_GABA`` 0 :math:`s_\mathrm{GABA}` GABA gating variable
``s_NMDA`` 0 :math:`s_\mathrm{NMDA}` NMDA gating variable
``s_AMPA`` 0 :math:`s_\mathrm{AMPA}` AMPA gating variable
``s_GABA`` 0 :math:`s_\mathrm{GABA}` GABA gating variable
``s_NMDA`` 0 :math:`s_\mathrm{NMDA}` NMDA gating variable
``I_NMDA`` 0 pA :math:`I_\mathrm{NMDA}` NMDA current
``I_AMPA`` 0 pA :math:`I_\mathrm{AMPA}` AMPA current
``I_GABA`` 0 pA :math:`I_\mathrm{GABA}` GABA current
Expand Down Expand Up @@ -170,8 +172,14 @@ SpikeEvent, CurrentEvent, DataLoggingRequest
References
++++++++++

.. [1] Wang, X.-J. (1999). Synaptic Basis of Cortical Persistent Activity: The Importance of NMDA Receptors to Working Memory. Journal of Neuroscience, 19(21), 9587–9603. https://doi.org/10.1523/JNEUROSCI.19-21-09587.1999
.. [2] Brunel, N., & Wang, X.-J. (2001). Effects of Neuromodulation in a Cortical Network Model of Object Working Memory Dominated by Recurrent Inhibition. Journal of Computational Neuroscience, 11(1), 63–85. https://doi.org/10.1023/A:1011204814320
.. [1] Wang, X.-J. (1999). Synaptic Basis of Cortical Persistent Activity: The
Importance of NMDA Receptors to Working Memory. Journal of Neuroscience,
19(21), 9587–9603. https://doi.org/10.1523/JNEUROSCI.19-21-09587.1999

.. [2] Brunel, N., & Wang, X.-J. (2001). Effects of Neuromodulation in a Cortical
Network Model of Object Working Memory Dominated by Recurrent Inhibition.
Journal of Computational Neuroscience, 11(1), 63–85. https://doi.org/10.1023/A:1011204814320

.. [3] Wang, X. J. (2002). Probabilistic decision making by slow reverberation in
cortical circuits. Neuron, 36(5), 955-968. https://doi.org/10.1016/S0896-6273(02)01092-9

Expand Down
24 changes: 13 additions & 11 deletions models/iaf_bw_2001_exact.h
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ The membrane potential and synaptic variables evolve according to
I_\mathrm{NMDA} &= \frac{(V(t) - V_E)}{1+[\mathrm{Mg^{2+}}]\mathrm{exp}(-0.062V(t))/3.57}\sum_{j \in
\Gamma_\mathrm{ex}}^{N_E}w_jS_{j,\mathrm{NMDA}}(t) \\[3ex]
I_\mathrm{GABA} &= (V(t) - V_I)\sum_{j \in \Gamma_\mathrm{in}}^{N_E}w_jS_{j,\mathrm{GABA}}(t) \\[5ex]
\frac{dS_{j,\mathrm{AMPA}}}{dt} &=-\frac{j,S_{\mathrm{AMPA}}}{\tau_\mathrm{AMPA}}+\sum_{k \in \Delta_j} \delta (t - t_j^k) \\[3ex]
\frac{dS_{j,\mathrm{AMPA}}}{dt} &=-\frac{j,S_{\mathrm{AMPA}}}{\tau_\mathrm{AMPA}}+\sum_{k \in \Delta_j} \delta (t - t_j^k) \\[3ex]
\frac{dS_{j,\mathrm{GABA}}}{dt} &= -\frac{S_{j,\mathrm{GABA}}}{\tau_\mathrm{GABA}} + \sum_{k \in \Delta_j} \delta (t - t_j^k) \\[3ex]
\frac{dS_{j,\mathrm{NMDA}}}{dt} &= -\frac{S_{j,\mathrm{NMDA}}}{\tau_\mathrm{NMDA,decay}}+ \alpha x_j (1 - S_{j,\mathrm{NMDA}})\\[3ex]
\frac{dx_j}{dt} &= -\frac{x_j}{\tau_\mathrm{NMDA,rise}} + \sum_{k \in \Delta_j} \delta (t - t_j^k)
Expand All @@ -106,6 +106,8 @@ The specification of this model differs slightly from the one in [1]_. The param
Additionally, the synapses from the external population is not separated from the recurrent AMPA-synapses.
This model is slow to simulate when there are many neurons with NMDA-synapses, since each post-synaptic neuron simulates each pre-synaptic connection explicitly. The model :doc:`iaf_bw_2001 </models/iaf_bw_2001>` is an approximation to this model which is significantly faster.

See also [2]_, [3]_

Parameters
++++++++++

Expand All @@ -115,16 +117,16 @@ The following parameters can be set in the status dictionary.
**Parameter** **Default** **Math equivalent** **Description**
=================== ================== ================================= ========================================================================
``E_L`` -70.0 mV :math:`E_\mathrm{L}` Leak reversal potential
``E_ex`` 0.0 mV :math:`E_\mathrm{ex}` Excitatory reversal potential
``E_in`` -70.0 mV :math:`E_\mathrm{in}` Inhibitory reversal potential
``V_th`` -55.0 mV :math:`V_\mathrm{th}` Spike threshold
``E_ex`` 0.0 mV :math:`E_\mathrm{ex}` Excitatory reversal potential
``E_in`` -70.0 mV :math:`E_\mathrm{in}` Inhibitory reversal potential
``V_th`` -55.0 mV :math:`V_\mathrm{th}` Spike threshold
``V_reset`` -60.0 mV :math:`V_\mathrm{reset}` Reset potential of the membrane
``C_m`` 250.0 pF :math:`C_\mathrm{m}` Capacitance of the membrane
``g_L`` 25.0 nS :math:`g_\mathrm{L}` Leak conductance
``t_ref`` 2.0 ms :math:`t_\mathrm{ref}` Duration of refractory period
``C_m`` 250.0 pF :math:`C_\mathrm{m}` Capacitance of the membrane
``g_L`` 25.0 nS :math:`g_\mathrm{L}` Leak conductance
``t_ref`` 2.0 ms :math:`t_\mathrm{ref}` Duration of refractory period
``tau_AMPA`` 2.0 ms :math:`\tau_\mathrm{AMPA}` Time constant of AMPA synapse
``tau_GABA`` 5.0 ms :math:`\tau_\mathrm{GABA}` Time constant of GABA synapse
``tau_rise_NMDA`` 2.0 ms :math:`\tau_\mathrm{NMDA,rise}` Rise time constant of NMDA synapse
``tau_rise_NMDA`` 2.0 ms :math:`\tau_\mathrm{NMDA,rise}` Rise time constant of NMDA synapse
``tau_decay_NMDA`` 100.0 ms :math:`\tau_\mathrm{NMDA,decay}` Decay time constant of NMDA synapse
``alpha`` 0.5 ms^{-1} :math:`\alpha` Rise-time coupling strength for NMDA synapse
``conc_Mg2`` 1.0 mM :math:`[\mathrm{Mg}^+]` Extracellular magnesium concentration
Expand All @@ -137,9 +139,9 @@ The following state variables evolve during simulation and are available either
**State variable** **Initial value** **Math equivalent** **Description**
================== ================= ========================== =================================
``V_m`` -70 mV :math:`V_{\mathrm{m}}` Membrane potential
``s_AMPA`` 0 :math:`s_\mathrm{AMPA}` AMPA gating variable
``s_GABA`` 0 :math:`s_\mathrm{GABA}` GABA gating variable
``s_NMDA`` 0 :math:`s_\mathrm{NMDA}` NMDA gating variable
``s_AMPA`` 0 :math:`s_\mathrm{AMPA}` AMPA gating variable
``s_GABA`` 0 :math:`s_\mathrm{GABA}` GABA gating variable
``s_NMDA`` 0 :math:`s_\mathrm{NMDA}` NMDA gating variable
``I_NMDA`` 0 pA :math:`I_\mathrm{NMDA}` NMDA current
``I_AMPA`` 0 pA :math:`I_\mathrm{AMPA}` AMPA current
``I_GABA`` 0 pA :math:`I_\mathrm{GABA}` GABA current
Expand Down
3 changes: 3 additions & 0 deletions models/iaf_psc_exp.h
Original file line number Diff line number Diff line change
Expand Up @@ -135,6 +135,9 @@ on the synaptic time constant according to
will numerically behave as if ``tau_m`` is equal to ``tau_syn_ex`` or
``tau_syn_in``, respectively, to avoid numerical instabilities.

NEST uses exact integration [2]_, [3]_ to integrate subthreshold membrane dynamics
with maximum precision.

For implementation details see the
`IAF Integration Singularity notebook <../model_details/IAF_Integration_Singularity.ipynb>`_.

Expand Down
2 changes: 1 addition & 1 deletion pynest/examples/one_neuron_with_noise.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@
###############################################################################
# Third, the Poisson generator is configured using ``SetStatus``, which expects
# a list of node handles and a list of parameter dictionaries. We set the
# Poisson generators to 8,000 Hz and 15,000 Hz, respectively. Note that we do
# Poisson generators to 80,000 Hz and 15,000 Hz, respectively. Note that we do
# not need to set parameters for the neuron and the voltmeter, since they have
# satisfactory defaults.

Expand Down
4 changes: 2 additions & 2 deletions pynest/examples/wang_decision_making.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,8 +36,8 @@
References
~~~~~~~~~~
.. [1] Wang X-J (2002). Probabilistic Decision Making by Slow Reverberation in
Cortical Circuits. Neuron, Volume 36, Issue 5, Pages 955-968.
https://doi.org/10.1016/S0896-6273(02)01092-9.
Cortical Circuits. Neuron, Volume 36, Issue 5, Pages 955-968.
https://doi.org/10.1016/S0896-6273(02)01092-9.

"""

Expand Down
Loading