A full-stack machine learning web app to predict your chances of getting into a graduate program, explain feature contributions, and evaluate your Statement of Purpose (SOP) using Gemini AI.
- 🔮 Admission Prediction using a trained ML model
- 🧠 SHAP Explainability for feature impact
- 📝 SOP Evaluation with Gemini AI (via Google Generative AI)
- 📊 Smart Recommendations to improve your profile
- 🏫 University Rating Auto-Fill based on world rank
- 📄 Downloadable summary report
- Frontend: Streamlit
- Backend: FastAPI
- ML Model: Scikit-learn (Linear Regression)
- Explainability: SHAP
- SOP Evaluation: Gemini (via Google Generative AI)
git clone https://github.com/saishagoel27/GAPS_NTCC
cd GAPS_NTCC
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r requirements.txt
Create a secrets.toml
file:
GEMINI_API_KEY = "your-google-gemini-api-key"
🔑 Get your API key from: Google AI Studio
1. source venv/Scripts/activate
2. export GEMINI_API_KEY="your-key-here"
3. chmod +x run_all.sh
4. ./run_all.sh or bash run_all.sh
- FastAPI backend runs on:
http://localhost:8000
- Streamlit app runs on:
http://localhost:8501
graduate-admission/
├── backend/ # FastAPI endpoints
│ ├── main.py
│ ├── utils.py # Gemini SOP scoring, SHAP, preprocess
│ └── models/ # Trained model .pkl files
├── frontend/
│ └── app.py # Streamlit UI
├── data/ # Admission dataset, university ranks
├── notebooks/ # Jupyter notebook for training
├── run_all.sh # Script to run both frontend + backend
├── requirements.txt
└── secrets.toml
Project.Walkthrough.mp4
Under MIT License - free to use and modify
Built by Anishaa and Saisha