Skip to content

syarwinaaa09/modeling-car-insurance-claim-outcomes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš— Car Insurance Data Analysis

This project explores car insurance trends using Python and visual storytelling. It includes a comprehensive data analysis notebook, an illustrative classic car image, and a well-structured dataset.

πŸ“ Project Structure

πŸ“¦ car-insurance-analysis/

β”œβ”€β”€ car.jpg # Classic car image used for visuals/branding

β”œβ”€β”€ car_insurance.csv # Dataset with car insurance customer information

β”œβ”€β”€ notebook.ipynb # Main Jupyter Notebook with EDA & modeling

└── README.md # Project overview and setup instructions

πŸ” Overview

This project focuses on:

  • Analyzing car insurance data to uncover key customer behaviors.
  • Performing exploratory data analysis (EDA).
  • Visualizing insights using matplotlib and seaborn.
  • Investigating potential factors influencing insurance purchases.
  • Optional modeling or predictive analysis.

The classic blue Volkswagen Beetle in car.jpg adds a vintage flair to our visual assets.

πŸ“Š Dataset

The dataset (car_insurance.csv) includes information like:

  • Age, job, marital status
  • Education level
  • Car ownership and previous claims
  • Policy purchase decision

πŸ› οΈ Tech Stack

  • Python 3.x
  • Jupyter Notebook
  • Pandas
  • Matplotlib
  • Seaborn
  • Scikit-learn (optional ML section)

πŸš€ Getting Started

  1. Clone the repo:
git clone https://github.com/yourusername/car-insurance-analysis.git
cd car-insurance-analysis
  1. Install dependencies:
pip install -r requirements.txt
  1. Launch the notebook:
jupyter notebook notebook.ipynb

πŸ“ƒ License

MIT License. Feel free to fork and modify the project!

Feel free to drop a ⭐ if you like the project!

About

a data analysis project on car insurance trends using Python and Jupyter Notebook

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published