Empowering the Future: Building Agentic AI Applications is a comprehensive, hands-on course that takes learners from foundational concepts of Large Language Models (LLMs) to building sophisticated multi-agent systems and deploying them into production. This repository contains practical coding exercises, examples, and projects using Python and LLM API endpoints.
- Prerequisites
- Quick Start
- Course Structure
- Installation
- Configuration
- Usage
- Features
- Contributing
- License
- Python: 3.9 or higher
- IDE: VS Code (recommended) or PyCharm Community Edition
- Docker Desktop: For containerization (required for production lessons)
- Git: For version control
- RAM: 8GB minimum, 16GB recommended
- Storage: 50GB+ free space
- Internet: Stable connection for API calls
You'll need an API key from one of these providers:
- OpenAI API
- Google Gemini API
- Azure OpenAI Service
-
Clone the repository
git clone <repository-url> cd ai-agents-lessons
-
Set up virtual environment
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies
pip install -r requirements.txt
-
Configure environment variables
cp .env.example .env # Edit .env with your API keys
-
Start with Lesson 1
cd lesson_1_environment_setup # Follow the Environment-Setup.md guide
Lesson | Topic | Key Technologies | Duration |
---|---|---|---|
Lesson 1 | Environment Setup | Python, Virtual Environments, API Configuration | 1 hour |
Lesson 2 | Chatbot Basics | OpenAI API, Basic Prompting, Function Calling | 2 hours |
Lesson 3 | RAG & Web Access | Brave Search API, Web Scraping, Information Retrieval | 3 hours |
Lesson 4 | Text-to-SQL | SQLite, Natural Language to SQL, Database Integration | 3 hours |
Lesson 5 | Document RAG | LlamaIndex, Vector Search, Document Processing | 3 hours |
Lesson 6 | Multi-Agent Systems | Agent Orchestration, Inter-agent Communication | 4 hours |
Lesson 7 | Evaluation Metrics | Performance Testing, Quality Metrics, Benchmarking | 2 hours |
Lesson 8 | API Deployment | FastAPI, REST APIs, Service Architecture | 3 hours |
Lesson 9 | Production Deployment | Docker, Cloud Deployment, Monitoring | 4 hours |
- Load Balancer: Azure OpenAI load balancing implementation
- Data: Sample datasets, databases, and test cases
- Utils: Shared utilities for API interactions, evaluation, and visualization
# Clone repository
git clone <repository-url>
cd ai-agents-lessons
# Create virtual environment
python -m venv venv
source venv/bin/activate # Linux/Mac
# or
venv\Scripts\activate # Windows
# Install dependencies
pip install -r requirements.txt
# Create conda environment
conda create -n ai-agents python=3.10
conda activate ai-agents
# Install dependencies
pip install -r requirements.txt
-
Create environment file
cp .env.example .env
-
Add your API keys to
.env
OPENAI_API_KEY=your_openai_api_key_here BRAVE_SEARCH_API_KEY=your_brave_search_key_here AZURE_OPENAI_ENDPOINT=your_azure_endpoint AZURE_OPENAI_API_KEY=your_azure_key
-
Verify setup
python -c "import openai; print('Setup successful!')"
# Start Jupyter Lab
jupyter lab
# Or Jupyter Notebook
jupyter notebook
# Lesson 3 example
cd lesson_3_rag_web_access/examples
python example_3.py
# Lesson 4 example
cd lesson_4_text_to_sql/examples
python example_4.py
cd multi_agent_chatbot
streamlit run app.py
cd load-balancer
python test_api.py
- Web Search Agent: Real-time information retrieval using Brave Search
- SQL Agent: Natural language to SQL query conversion
- Document Agent: RAG-based document processing and Q&A
- Router Agent: Intelligent request routing to appropriate agents
- Function calling with OpenAI/Azure OpenAI
- Vector embeddings and semantic search
- Database integration (SQLite, SQL Server)
- Document processing (PDF, TXT, DOCX)
- API deployment with FastAPI
- Docker containerization
- Load balancing and scaling
- Performance metrics and benchmarking
- Error handling and logging
- API monitoring and health checks
- Conversation memory management
ai-agents-lessons/
βββ π lesson_1_environment_setup/ # Environment configuration
βββ π lesson_2_chatbot_basics/ # Basic chatbot implementation
βββ π lesson_3_rag_web_access/ # Web search and RAG
βββ π lesson_4_text_to_sql/ # SQL generation and execution
βββ π lesson_5_document_rag/ # Document processing
βββ π lesson_6_multi_agent_systems/ # Multi-agent orchestration
βββ π lesson_7_evaluation_metrics/ # Testing and evaluation
βββ π lesson_8_api_deployment/ # API development
βββ π lesson_9_production/ # Production deployment
βββ π load-balancer/ # Azure OpenAI load balancer
βββ π data/ # Sample data and databases
βββ π utils/ # Shared utilities
βββ π requirements.txt # Python dependencies
βββ π README.md # This file
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- Issues: Report bugs or request features via GitHub Issues
- Documentation: Check individual lesson READMEs for detailed instructions
- Examples: Refer to the
examples/
directories in each lesson
- OpenAI for GPT models and API
- LlamaIndex for RAG capabilities
- Brave Search for web search functionality
- The open-source AI community
Ready to build the future with AI agents? Start with Lesson 1! π