Skip to content

tchitheka/agentic-ai-workflows

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

16 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

AI Agents Lessons - Comprehensive Tutorial Series

Uploading Agentic AI.jpeg…

Python 3.9+ License: MIT

πŸš€ Overview

Empowering the Future: Building Agentic AI Applications is a comprehensive, hands-on course that takes learners from foundational concepts of Large Language Models (LLMs) to building sophisticated multi-agent systems and deploying them into production. This repository contains practical coding exercises, examples, and projects using Python and LLM API endpoints.

πŸ“‹ Table of Contents

πŸ”§ Prerequisites

Software Requirements

  • Python: 3.9 or higher
  • IDE: VS Code (recommended) or PyCharm Community Edition
  • Docker Desktop: For containerization (required for production lessons)
  • Git: For version control

Hardware Requirements

  • RAM: 8GB minimum, 16GB recommended
  • Storage: 50GB+ free space
  • Internet: Stable connection for API calls

API Access

You'll need an API key from one of these providers:

  • OpenAI API
  • Google Gemini API
  • Azure OpenAI Service

πŸš€ Quick Start

  1. Clone the repository

    git clone <repository-url>
    cd ai-agents-lessons
  2. Set up virtual environment

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install dependencies

    pip install -r requirements.txt
  4. Configure environment variables

    cp .env.example .env
    # Edit .env with your API keys
  5. Start with Lesson 1

    cd lesson_1_environment_setup
    # Follow the Environment-Setup.md guide

πŸ“š Course Structure

Core Lessons

Lesson Topic Key Technologies Duration
Lesson 1 Environment Setup Python, Virtual Environments, API Configuration 1 hour
Lesson 2 Chatbot Basics OpenAI API, Basic Prompting, Function Calling 2 hours
Lesson 3 RAG & Web Access Brave Search API, Web Scraping, Information Retrieval 3 hours
Lesson 4 Text-to-SQL SQLite, Natural Language to SQL, Database Integration 3 hours
Lesson 5 Document RAG LlamaIndex, Vector Search, Document Processing 3 hours
Lesson 6 Multi-Agent Systems Agent Orchestration, Inter-agent Communication 4 hours
Lesson 7 Evaluation Metrics Performance Testing, Quality Metrics, Benchmarking 2 hours
Lesson 8 API Deployment FastAPI, REST APIs, Service Architecture 3 hours
Lesson 9 Production Deployment Docker, Cloud Deployment, Monitoring 4 hours

Additional Components

  • Load Balancer: Azure OpenAI load balancing implementation
  • Data: Sample datasets, databases, and test cases
  • Utils: Shared utilities for API interactions, evaluation, and visualization

πŸ›  Installation

Method 1: Standard Installation

# Clone repository
git clone <repository-url>
cd ai-agents-lessons

# Create virtual environment
python -m venv venv
source venv/bin/activate  # Linux/Mac
# or
venv\Scripts\activate     # Windows

# Install dependencies
pip install -r requirements.txt

Method 2: Using Conda

# Create conda environment
conda create -n ai-agents python=3.10
conda activate ai-agents

# Install dependencies
pip install -r requirements.txt

βš™οΈ Configuration

  1. Create environment file

    cp .env.example .env
  2. Add your API keys to .env

    OPENAI_API_KEY=your_openai_api_key_here
    BRAVE_SEARCH_API_KEY=your_brave_search_key_here
    AZURE_OPENAI_ENDPOINT=your_azure_endpoint
    AZURE_OPENAI_API_KEY=your_azure_key
  3. Verify setup

    python -c "import openai; print('Setup successful!')"

πŸ’» Usage

Running Jupyter Notebooks

# Start Jupyter Lab
jupyter lab

# Or Jupyter Notebook
jupyter notebook

Running Examples

# Lesson 3 example
cd lesson_3_rag_web_access/examples
python example_3.py

# Lesson 4 example
cd lesson_4_text_to_sql/examples
python example_4.py

Running the Multi-Agent Chatbot

cd multi_agent_chatbot
streamlit run app.py

Testing Load Balancer

cd load-balancer
python test_api.py

✨ Features

πŸ€– AI Agent Capabilities

  • Web Search Agent: Real-time information retrieval using Brave Search
  • SQL Agent: Natural language to SQL query conversion
  • Document Agent: RAG-based document processing and Q&A
  • Router Agent: Intelligent request routing to appropriate agents

πŸ”§ Technical Features

  • Function calling with OpenAI/Azure OpenAI
  • Vector embeddings and semantic search
  • Database integration (SQLite, SQL Server)
  • Document processing (PDF, TXT, DOCX)
  • API deployment with FastAPI
  • Docker containerization
  • Load balancing and scaling

πŸ“Š Evaluation & Monitoring

  • Performance metrics and benchmarking
  • Error handling and logging
  • API monitoring and health checks
  • Conversation memory management

πŸ—οΈ Project Structure

ai-agents-lessons/
β”œβ”€β”€ πŸ“ lesson_1_environment_setup/    # Environment configuration
β”œβ”€β”€ πŸ“ lesson_2_chatbot_basics/       # Basic chatbot implementation
β”œβ”€β”€ πŸ“ lesson_3_rag_web_access/       # Web search and RAG
β”œβ”€β”€ πŸ“ lesson_4_text_to_sql/          # SQL generation and execution
β”œβ”€β”€ πŸ“ lesson_5_document_rag/         # Document processing
β”œβ”€β”€ πŸ“ lesson_6_multi_agent_systems/  # Multi-agent orchestration
β”œβ”€β”€ πŸ“ lesson_7_evaluation_metrics/   # Testing and evaluation
β”œβ”€β”€ πŸ“ lesson_8_api_deployment/       # API development
β”œβ”€β”€ πŸ“ lesson_9_production/           # Production deployment
β”œβ”€β”€ πŸ“ load-balancer/                 # Azure OpenAI load balancer
β”œβ”€β”€ πŸ“ data/                          # Sample data and databases
β”œβ”€β”€ πŸ“ utils/                         # Shared utilities
β”œβ”€β”€ πŸ“„ requirements.txt               # Python dependencies
└── πŸ“„ README.md                      # This file

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

πŸ“ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™‹β€β™‚οΈ Support

  • Issues: Report bugs or request features via GitHub Issues
  • Documentation: Check individual lesson READMEs for detailed instructions
  • Examples: Refer to the examples/ directories in each lesson

🌟 Acknowledgments

  • OpenAI for GPT models and API
  • LlamaIndex for RAG capabilities
  • Brave Search for web search functionality
  • The open-source AI community

Ready to build the future with AI agents? Start with Lesson 1! πŸš€

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 92.7%
  • Python 6.6%
  • Shell 0.7%