-
Notifications
You must be signed in to change notification settings - Fork 10
feat(lattice): Make lattice geometries differentiable and backend-agn… #30
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
refraction-ray
merged 17 commits into
tensorcircuit:master
from
Stellogic:feature/lattice-updates
Aug 16, 2025
Merged
Changes from all commits
Commits
Show all changes
17 commits
Select commit
Hold shift + click to select a range
9e01be8
feat(lattice): Make lattice geometries differentiable and backend-agn…
Stellogic 9d22384
fix mypy errors
Stellogic d71d4a1
delete all the debug log
Stellogic bb65592
fix according to the review
Stellogic 0ad707c
fix black
Stellogic 92bc8e4
fix black
Stellogic efaee05
fix mypy errors
Stellogic 7063c6f
fix test_backends.py
Stellogic 0660abf
Merge remote-tracking branch 'upstream/master' into feature/lattice-u…
Stellogic 589763e
fix black
Stellogic daa3ff2
fix according to the review
Stellogic 9575be5
fix according to the review
Stellogic d372f72
update lattice_neighbor_time_compare.py to enhance the accuracy
Stellogic 0b38522
fix black
Stellogic 04aca93
fix according to the review
Stellogic 283e1fd
fix according to the review
Stellogic 494a99b
fix black
Stellogic File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,95 +1,111 @@ | ||
""" | ||
An example script to benchmark neighbor-finding algorithms in CustomizeLattice. | ||
|
||
This script demonstrates the performance difference between the KDTree-based | ||
neighbor search and a baseline all-to-all distance matrix method. | ||
As shown by the results, the KDTree approach offers a significant speedup, | ||
especially when calculating for a large number of neighbor shells (large max_k). | ||
Benchmark: Compare neighbor-building time between KDTree and distance-matrix | ||
methods in CustomizeLattice for varying lattice sizes. | ||
""" | ||
|
||
import timeit | ||
from typing import Any, Dict, List | ||
import argparse | ||
import csv | ||
import time | ||
from typing import Iterable, List, Tuple, Optional | ||
import logging | ||
|
||
import numpy as np | ||
|
||
# Silence verbose infos from the library during benchmarks | ||
|
||
logging.basicConfig(level=logging.WARNING) | ||
|
||
from tensorcircuit.templates.lattice import CustomizeLattice | ||
|
||
|
||
def run_once( | ||
n: int, d: int, max_k: int, repeats: int, seed: int | ||
) -> Tuple[float, float]: | ||
"""Run one size point and return (time_kdtree, time_matrix).""" | ||
rng = np.random.default_rng(seed) | ||
ids = list(range(n)) | ||
|
||
# Collect times for each repeat with different random coordinates | ||
kdtree_times: List[float] = [] | ||
matrix_times: List[float] = [] | ||
|
||
for _ in range(repeats): | ||
# Generate different coordinates for each repeat | ||
coords = rng.random((n, d), dtype=float) | ||
lat = CustomizeLattice(dimensionality=d, identifiers=ids, coordinates=coords) | ||
|
||
# KDTree path - single measurement | ||
t0 = time.perf_counter() | ||
lat._build_neighbors(max_k=max_k, use_kdtree=True) | ||
kdtree_times.append(time.perf_counter() - t0) | ||
|
||
# Distance-matrix path - single measurement | ||
t0 = time.perf_counter() | ||
lat._build_neighbors(max_k=max_k, use_kdtree=False) | ||
matrix_times.append(time.perf_counter() - t0) | ||
|
||
def run_benchmark() -> None: | ||
""" | ||
Executes the benchmark test and prints the results in a formatted table. | ||
""" | ||
# --- Benchmark Parameters --- | ||
# A list of lattice sizes (N = number of sites) to test | ||
site_counts: List[int] = [10, 50, 100, 200, 500, 1000, 1500, 2000] | ||
return float(np.mean(kdtree_times)), float(np.mean(matrix_times)) | ||
|
||
# Use a large k to better showcase the performance of KDTree in | ||
# finding multiple neighbor shells, as suggested by the maintainer. | ||
max_k: int = 2000 | ||
|
||
# Reduce the number of runs to keep the total benchmark time reasonable, | ||
# especially with a large max_k. | ||
number_of_runs: int = 3 | ||
# -------------------------- | ||
def parse_sizes(s: str) -> List[int]: | ||
return [int(x) for x in s.split(",") if x.strip()] | ||
|
||
results: List[Dict[str, Any]] = [] | ||
|
||
print("=" * 75) | ||
print("Starting neighbor finding benchmark for CustomizeLattice...") | ||
print(f"Parameters: max_k={max_k}, number_of_runs={number_of_runs}") | ||
print("=" * 75) | ||
def format_row(n: int, t_kdtree: float, t_matrix: float) -> str: | ||
speedup = (t_matrix / t_kdtree) if t_kdtree > 0 else float("inf") | ||
return f"{n:>8} | {t_kdtree:>12.6f} | {t_matrix:>14.6f} | {speedup:>7.2f}x" | ||
|
||
|
||
def main(argv: Optional[Iterable[str]] = None) -> int: | ||
p = argparse.ArgumentParser(description="Neighbor-building time comparison") | ||
p.add_argument( | ||
"--sizes", | ||
type=parse_sizes, | ||
default=[128, 256, 512, 1024, 2048], | ||
help="Comma-separated site counts to benchmark (default: 128,256,512,1024,2048)", | ||
) | ||
p.add_argument( | ||
"--dims", type=int, default=2, help="Lattice dimensionality (default: 2)" | ||
) | ||
p.add_argument( | ||
"--max-k", type=int, default=6, help="Max neighbor shells k (default: 6)" | ||
) | ||
p.add_argument( | ||
"--repeats", type=int, default=5, help="Repeats per measurement (default: 5)" | ||
) | ||
p.add_argument("--seed", type=int, default=42, help="PRNG seed (default: 42)") | ||
p.add_argument("--csv", type=str, default="", help="Optional CSV output path") | ||
args = p.parse_args(list(argv) if argv is not None else None) | ||
|
||
print("=" * 74) | ||
print( | ||
f"{'Sites (N)':>10} | {'KDTree Time (s)':>18} | {'Baseline Time (s)':>20} | {'Speedup':>10}" | ||
f"Benchmark CustomizeLattice neighbor-building | dims={args.dims} max_k={args.max_k} repeats={args.repeats}" | ||
) | ||
print("-" * 75) | ||
print("=" * 74) | ||
print(f"{'N':>8} | {'KDTree(s)':>12} | {'DistMatrix(s)':>14} | {'Speedup':>7}") | ||
print("-" * 74) | ||
|
||
for n_sites in site_counts: | ||
# Prepare the setup code for timeit. | ||
# This code generates a random lattice and is executed before timing begins. | ||
# We use a fixed seed to ensure the coordinates are the same for both tests. | ||
setup_code = f""" | ||
import numpy as np | ||
from tensorcircuit.templates.lattice import CustomizeLattice | ||
rows: List[Tuple[int, float, float]] = [] | ||
for n in args.sizes: | ||
t_kdtree, t_matrix = run_once(n, args.dims, args.max_k, args.repeats, args.seed) | ||
rows.append((n, t_kdtree, t_matrix)) | ||
print(format_row(n, t_kdtree, t_matrix)) | ||
|
||
np.random.seed(42) | ||
coords = np.random.rand({n_sites}, 2) | ||
ids = list(range({n_sites})) | ||
lat = CustomizeLattice(dimensionality=2, identifiers=ids, coordinates=coords) | ||
""" | ||
# Define the Python statements to be timed. | ||
stmt_kdtree = f"lat._build_neighbors(max_k={max_k})" | ||
stmt_baseline = f"lat._build_neighbors_by_distance_matrix(max_k={max_k})" | ||
|
||
try: | ||
# Execute the timing. timeit returns the total time for all runs. | ||
time_kdtree = ( | ||
timeit.timeit(stmt=stmt_kdtree, setup=setup_code, number=number_of_runs) | ||
/ number_of_runs | ||
) | ||
time_baseline = ( | ||
timeit.timeit( | ||
stmt=stmt_baseline, setup=setup_code, number=number_of_runs | ||
) | ||
/ number_of_runs | ||
) | ||
|
||
# Calculate and store results, handling potential division by zero. | ||
speedup = time_baseline / time_kdtree if time_kdtree > 0 else float("inf") | ||
results.append( | ||
{ | ||
"n_sites": n_sites, | ||
"time_kdtree": time_kdtree, | ||
"time_baseline": time_baseline, | ||
"speedup": speedup, | ||
} | ||
) | ||
print( | ||
f"{n_sites:>10} | {time_kdtree:>18.6f} | {time_baseline:>20.6f} | {speedup:>9.2f}x" | ||
) | ||
|
||
except Exception as e: | ||
print(f"An error occurred at N={n_sites}: {e}") | ||
break | ||
|
||
print("-" * 75) | ||
print("Benchmark complete.") | ||
if args.csv: | ||
with open(args.csv, "w", newline="", encoding="utf-8") as f: | ||
w = csv.writer(f) | ||
w.writerow(["N", "time_kdtree_s", "time_distance_matrix_s", "speedup"]) | ||
for n, t_kdtree, t_matrix in rows: | ||
speedup = (t_matrix / t_kdtree) if t_kdtree > 0 else float("inf") | ||
w.writerow([n, f"{t_kdtree:.6f}", f"{t_matrix:.6f}", f"{speedup:.2f}"]) | ||
|
||
print("-" * 74) | ||
print(f"Saved CSV to: {args.csv}") | ||
|
||
print("-" * 74) | ||
print("Done.") | ||
return 0 | ||
|
||
|
||
if __name__ == "__main__": | ||
run_benchmark() | ||
raise SystemExit(main()) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
""" | ||
Lennard-Jones Potential Optimization Example | ||
|
||
This script demonstrates how to use TensorCircuit's differentiable lattice geometries | ||
to optimize crystal structure. It finds the equilibrium lattice constant that minimizes | ||
the total Lennard-Jones potential energy of a 2D square lattice. | ||
|
||
This example showcases a key capability of the differentiable lattice system: | ||
making geometric parameters (like lattice constants) fully differentiable and | ||
optimizable using automatic differentiation. This enables variational material design | ||
where crystal structures can be optimized to minimize physical energy functions. | ||
""" | ||
|
||
import optax | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import tensorcircuit as tc | ||
|
||
|
||
tc.set_dtype("float64") # Use tc for universal control | ||
K = tc.set_backend("jax") | ||
|
||
|
||
def calculate_potential(log_a, epsilon=0.5, sigma=1.0): | ||
""" | ||
Calculate the total Lennard-Jones potential energy for a given logarithm of the lattice constant (log_a). | ||
This version creates the lattice inside the function to demonstrate truly differentiable geometry. | ||
""" | ||
lattice_constant = K.exp(log_a) | ||
|
||
# Create lattice with the differentiable parameter | ||
size = (4, 4) # Smaller size for demonstration | ||
lattice = tc.templates.lattice.SquareLattice( | ||
size, lattice_constant=lattice_constant, pbc=True | ||
) | ||
d = lattice.distance_matrix | ||
|
||
d_safe = K.where(d > 1e-9, d, K.convert_to_tensor(1e-9)) | ||
|
||
term12 = K.power(sigma / d_safe, 12) | ||
term6 = K.power(sigma / d_safe, 6) | ||
potential_matrix = 4 * epsilon * (term12 - term6) | ||
|
||
num_sites = lattice.num_sites | ||
# Zero out self-interactions (diagonal elements) | ||
eye_mask = K.eye(num_sites, dtype=potential_matrix.dtype) | ||
potential_matrix = potential_matrix * (1 - eye_mask) | ||
|
||
potential_energy = K.sum(potential_matrix) / 2.0 | ||
|
||
return potential_energy | ||
|
||
|
||
# Create value and grad function for optimization | ||
value_and_grad_fun = K.jit(K.value_and_grad(calculate_potential)) | ||
|
||
optimizer = optax.adam(learning_rate=0.01) | ||
|
||
log_a = K.convert_to_tensor(K.log(K.convert_to_tensor(2.0))) | ||
|
||
opt_state = optimizer.init(log_a) | ||
|
||
history = {"a": [], "energy": []} | ||
|
||
print("Starting optimization of lattice constant...") | ||
for i in range(200): | ||
energy, grad = value_and_grad_fun(log_a) | ||
|
||
history["a"].append(K.exp(log_a)) | ||
history["energy"].append(energy) | ||
|
||
updates, opt_state = optimizer.update(grad, opt_state) | ||
log_a = optax.apply_updates(log_a, updates) | ||
|
||
if (i + 1) % 20 == 0: | ||
current_a = K.exp(log_a) | ||
print( | ||
f"Iteration {i+1}/200: Total Energy = {energy:.4f}, Lattice Constant = {current_a:.4f}" | ||
) | ||
|
||
final_a = K.exp(log_a) | ||
final_energy = calculate_potential(log_a) | ||
|
||
print("\nOptimization finished!") | ||
print(f"Final optimized lattice constant: {final_a:.6f}") | ||
print(f"Corresponding minimum total energy: {final_energy:.6f}") | ||
|
||
# Vectorized calculation for the potential curve | ||
a_vals = np.linspace(0.8, 1.5, 200) | ||
log_a_vals = K.log(K.convert_to_tensor(a_vals)) | ||
|
||
# Use vmap to create a vectorized version of the potential function | ||
vmap_potential = K.vmap(lambda la: calculate_potential(la)) | ||
potential_curve = vmap_potential(log_a_vals) | ||
|
||
plt.figure(figsize=(10, 6)) | ||
plt.plot(a_vals, potential_curve, label="Lennard-Jones Potential", color="blue") | ||
plt.scatter( | ||
history["a"], | ||
history["energy"], | ||
color="red", | ||
s=20, | ||
zorder=5, | ||
label="Optimization Steps", | ||
) | ||
plt.scatter( | ||
final_a, | ||
final_energy, | ||
color="green", | ||
s=100, | ||
zorder=6, | ||
marker="*", | ||
label="Final Optimized Point", | ||
) | ||
|
||
plt.title("Lennard-Jones Potential Optimization") | ||
plt.xlabel("Lattice Constant (a)") | ||
plt.ylabel("Total Potential Energy") | ||
plt.legend() | ||
plt.grid(True) | ||
plt.show() |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.