Skip to content

A tutorial for MNIST handwritten digit classification using sklearn, PyTorch and Keras.

Notifications You must be signed in to change notification settings

ziao-guo/mnist_tutorial

 
 

Repository files navigation

mnist_tutorial

A tutorial for MNIST handwritten digit classification using sklearn, PyTorch and Keras.

Code structure

Requirements

Code tested on following environments, other version should also work:

  • linux system (ubuntu 16.04)
  • python 3.6.3
  • numpy 1.13.3
  • matplotlib 2.1.0
  • sklearn 0.19.1
  • pytorch 0.4.1
  • keras 2.1.2

For students from SJTU

Please read HEAR.

Results of Experiments

We use pytorch to solve Q5.

Question Model Train_Acc Test_Acc
Q1 LogisticRegression(defalt) 97.20% 87.90%
Q2 BernoulliNB(default) 81.63% 81.90%
Q3 LinearSVC(default) 97.68% 87.10%
Q4 LinearSVC(adjusted) 93.63% 89.10%
Q5 SimpleNet() 99.76% 99.10%

About

A tutorial for MNIST handwritten digit classification using sklearn, PyTorch and Keras.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%