Official implementation of our paper:
Consistency-Guided Asynchronous Contrastive Tuning for Few-Shot Class-Incremental Tuning of Foundation Models
Shuvendu Roy, Elham Dolatabadi, Arash Afkanpour, and Ali Etemad
> Transactions on Machine Learning Research (TMLR 2025)
Installing the dependencies
pip install -r requirements.txt
14 out of 16 datasets will be downloaded automatically from huggingface datasets. For CUB-200, and miniImageNet please refer to CEC and downlaod it from here.
Extract the datasets to ./data
folder.
for dataset_name in sun397 dtd voc2007 stanford_cars resisc45 oxford_pets oxford_flowers gtsrb fgvc_aircraft eurosat country211 caltech101 cifar100 cub200 food101 mini_imagenet; do
python train.py \
--update_base_classifier_with_prototypes True \
--epochs_base 0 \
--num_seeds 3 \
--shot 10 \
--result_key baseline \
--dataset "${dataset_name}"
done
for dataset_name in sun397 dtd voc2007 stanford_cars resisc45 oxford_pets oxford_flowers gtsrb fgvc_aircraft eurosat country211 caltech101 cifar100 cub200 food101 mini_imagenet; do
python train.py \
--update_base_classifier_with_prototypes False \
--start_training_with_prototypes True \
--moco_loss_factor 1.0 \
--epochs_base 50 \
--num_seeds 3 \
--num_views 2 \
--shot 10 \
--adapt_blocks 12 \
--hf_model_checkpoint google/vit-base-patch16-224-in21k \
--pet_cls LoRA \
--result_key coact_fscit \
--dataset "${dataset_name}" \
--incft True
done
CoACT also shows superior performance than the prior works on conventional FSCIL setup. Following is the comparison of the results on the CIFAR-100 datasset.
for dataset_name in cifar100 cub200 mini_imagenet; do
python train.py \
--fsl_setup "FSCIL" \
--shot 5 \
--epochs_base 25 \
--incft_layers "classifier+pet" \
--start_training_with_prototypes True \
--pet_cls LoRA \
--incft True \
--result_key act_fscil \
--num_seeds 3 \
--dataset "${dataset_name}"
done
We would like to thank the authors of the following repositories to make their code public: MoCo, SAVC, and SupCon.
If you find our work useful to your research, please cite our paper:
@article{CoACT,
title={Consistency-Guided Asynchronous Contrastive Tuning for Few-Shot Class-Incremental Tuning of Foundation Models},
author={Shuvendu Roy, Elham Dolatabadi, Arash Afkanpour, Ali Etemad},
journal={Transactions on Machine Learning Research},
year={2025}
}