Code implementation of Spatial Annealing for Efficient Few-shot Neural Rendering (AAAI 2025)
Comparisons:
This code is implemented based on TriMipRF.
First, create a new sanerf environment:
conda create -n sanerf python==3.8
Next, activate the environment:
conda activate sanerf
Install the following dependency:
PyTorch (1.13.1 + CUDA 11.6)
nvdiffrast
tiny-cuda-nn
pip install -r requirements.txt
Please download the nerf_synthetic dataset from the NeRF official project.
bash ./scripts/reproduce_sanerf.sh
The reproduced results have an error margin of 0.05dB.
Replace method=sanerf
with method=trimiprf
in "./scripts/reproduce_sanerf.sh" , then run:
bash ./scripts/reproduce_sanerf.sh
If you find our work useful, please cite it as
@inproceedings{xiao2025spatial,
title={Spatial Annealing for Efficient Few-shot Neural Rendering},
author={Xiao, Yuru and Zhai, Deming and Zhao, Wenbo and Jiang, Kui and Jiang, Junjun and Liu, Xianming},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={39},
number={8},
pages={8691--8699},
year={2025}
}