Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 41 additions & 0 deletions sgl-kernel/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,47 @@ Steps to add a new kernel:
4. Update [CMakeLists.txt](https://github.com/sgl-project/sglang/blob/main/sgl-kernel/CMakeLists.txt) to include new CUDA source
5. Expose Python interface in [python](https://github.com/sgl-project/sglang/blob/main/sgl-kernel/python/sgl_kernel)

### Development Tips

1. When implementing kernels in [csrc](https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc), only define pure CUDA files and C++ interfaces. If you need to use `Torch::tensor`, use `<torch/all.h>` instead of `<torch/extension.h>`. Using `<torch/extension.h>` will cause compilation errors when using SABI.

2. When creating torch extensions, simply add the function definition with `m.def`:
```cpp
m.def("register_graph_buffers", register_graph_buffers);
```

3. When exposing Python interfaces, avoid using kwargs in C++ interface kernels.

**Avoid this:**

```cpp
torch.ops.sgl_kernel.apply_rope_pos_ids_cos_sin_cache.default(
q=query.view(query.shape[0], -1, head_size),
k=key.view(key.shape[0], -1, head_size),
q_rope=query.view(query.shape[0], -1, head_size),
k_rope=key.view(key.shape[0], -1, head_size),
cos_sin_cache=cos_sin_cache,
pos_ids=positions.long(),
interleave=(not is_neox),
cuda_stream=get_cuda_stream(),
)
```

**Use this instead:**

```cpp
torch.ops.sgl_kernel.apply_rope_pos_ids_cos_sin_cache.default(
query.view(query.shape[0], -1, head_size),
key.view(key.shape[0], -1, head_size),
query.view(query.shape[0], -1, head_size),
key.view(key.shape[0], -1, head_size),
cos_sin_cache,
positions.long(),
(not is_neox),
get_cuda_stream(),
)
```

### Build & Install

Development build:
Expand Down
188 changes: 37 additions & 151 deletions sgl-kernel/csrc/torch_extension.cc
Original file line number Diff line number Diff line change
Expand Up @@ -22,121 +22,49 @@ TORCH_LIBRARY_EXPAND(sgl_kernel, m) {
/*
* From csrc/allreduce
*/
m.def(
"init_custom_ar(int rank_id, int world_size, Tensor rank_data, int[] buffers, int[] tmp_result_buffers, int[] "
"barrier_in, int[] barrier_out) -> int");
m.impl("init_custom_ar", torch::kCUDA, &init_custom_ar);

m.def("dispose", &dispose);

m.def("all_reduce(int fa, Tensor inp, Tensor! out) -> ()");
m.impl("all_reduce", torch::kCUDA, &all_reduce);

m.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta);
m.def("register_graph_buffers", &register_graph_buffers);
m.def("init_custom_ar", init_custom_ar);
m.def("dispose", dispose);
m.def("all_reduce", all_reduce);
m.def("get_graph_buffer_ipc_meta", get_graph_buffer_ipc_meta);
m.def("register_graph_buffers", register_graph_buffers);

/*
* From csrc/attention
*/
m.def(
"lightning_attention_decode(Tensor q, Tensor k, Tensor v, Tensor past_kv, Tensor slope, Tensor! output, Tensor! "
"new_kv) -> ()");
m.impl("lightning_attention_decode", torch::kCUDA, &lightning_attention_decode);
m.def("lightning_attention_decode", lightning_attention_decode);

/*
* From csrc/elementwise
*/
m.def("rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, int cuda_stream) -> ()");
m.impl("rmsnorm", torch::kCUDA, &rmsnorm);

m.def("fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps) -> ()");
m.impl("fused_add_rmsnorm", torch::kCUDA, &sgl_fused_add_rmsnorm);

m.def("gemma_rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, int cuda_stream) -> ()");
m.impl("gemma_rmsnorm", torch::kCUDA, &gemma_rmsnorm);

m.def("gemma_fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps, int cuda_stream) -> ()");
m.impl("gemma_fused_add_rmsnorm", torch::kCUDA, &gemma_fused_add_rmsnorm);

m.def("silu_and_mul(Tensor! out, Tensor input, int cuda_stream) -> ()");
m.impl("silu_and_mul", torch::kCUDA, &silu_and_mul);

m.def("gelu_tanh_and_mul(Tensor! out, Tensor input, int cuda_stream) -> ()");
m.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul);

m.def("gelu_and_mul(Tensor! out, Tensor input, int cuda_stream) -> ()");
m.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul);

m.def(
"apply_rope_pos_ids_cos_sin_cache(Tensor q, Tensor k, Tensor! q_rope, Tensor! k_rope, Tensor cos_sin_cache, "
"Tensor pos_ids, bool interleave, int cuda_stream) -> ()");
m.impl("apply_rope_pos_ids_cos_sin_cache", torch::kCUDA, &apply_rope_pos_ids_cos_sin_cache);
m.def("rmsnorm", rmsnorm);
m.def("fused_add_rmsnorm", sgl_fused_add_rmsnorm);
m.def("gemma_rmsnorm", gemma_rmsnorm);
m.def("gemma_fused_add_rmsnorm", gemma_fused_add_rmsnorm);
m.def("silu_and_mul", silu_and_mul);
m.def("gelu_tanh_and_mul", gelu_tanh_and_mul);
m.def("gelu_and_mul", gelu_and_mul);
m.def("apply_rope_pos_ids_cos_sin_cache", apply_rope_pos_ids_cos_sin_cache);

/*
* From csrc/gemm
*/
m.def("awq_dequantize(Tensor qweight, Tensor scales, Tensor qzeros) -> Tensor");
m.impl("awq_dequantize", torch::kCUDA, &awq_dequantize);

m.def(
"int8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
"bias) -> Tensor");
m.impl("int8_scaled_mm", torch::kCUDA, &int8_scaled_mm);

m.def(
"fp8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
"bias) -> Tensor");
m.impl("fp8_scaled_mm", torch::kCUDA, &fp8_scaled_mm);

m.def(
"fp8_blockwise_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype) -> "
"Tensor");
m.impl("fp8_blockwise_scaled_mm", torch::kCUDA, &fp8_blockwise_scaled_mm);

m.def(
"sgl_per_token_group_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
" float eps, float fp8_min, float fp8_max) -> ()");
m.impl("sgl_per_token_group_quant_fp8", torch::kCUDA, &sgl_per_token_group_quant_fp8);

m.def(
"sgl_per_token_group_quant_int8(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
" float eps, float int8_min, float int8_max) -> ()");
m.impl("sgl_per_token_group_quant_int8", torch::kCUDA, &sgl_per_token_group_quant_int8);

m.def("sgl_per_tensor_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, bool is_static) -> ()");
m.impl("sgl_per_tensor_quant_fp8", torch::kCUDA, &sgl_per_tensor_quant_fp8);

m.def("sgl_per_token_quant_fp8(Tensor input, Tensor output_q, Tensor output_s) -> ()");
m.impl("sgl_per_token_quant_fp8", torch::kCUDA, &sgl_per_token_quant_fp8);

m.def(
"cublas_grouped_gemm(Tensor[] inputs, Tensor[] weights, Tensor[] outputs,"
" ScalarType out_dtype, int cublas_handle, int cuda_stream) -> ()");
m.impl("cublas_grouped_gemm", torch::kCUDA, &cublas_grouped_gemm);

m.def(
"cutlass_scaled_fp4_mm(Tensor! out, Tensor a, Tensor b,"
" Tensor block_scale_a, Tensor block_scale_b,"
" Tensor alpha) -> ()");
m.impl("cutlass_scaled_fp4_mm", torch::kCUDA, &cutlass_scaled_fp4_mm);

m.def(
"scaled_fp4_quant(Tensor! output, Tensor! input,"
" Tensor! output_scale, Tensor! input_scale) -> ()");
m.impl("scaled_fp4_quant", torch::kCUDA, &scaled_fp4_quant);
m.def("awq_dequantize", awq_dequantize);
m.def("int8_scaled_mm", int8_scaled_mm);
m.def("fp8_scaled_mm", fp8_scaled_mm);
m.def("fp8_blockwise_scaled_mm", fp8_blockwise_scaled_mm);
m.def("sgl_per_token_group_quant_fp8", sgl_per_token_group_quant_fp8);
m.def("sgl_per_token_group_quant_int8", sgl_per_token_group_quant_int8);
m.def("sgl_per_tensor_quant_fp8", sgl_per_tensor_quant_fp8);
m.def("sgl_per_token_quant_fp8", sgl_per_token_quant_fp8);
m.def("cublas_grouped_gemm", cublas_grouped_gemm);
m.def("cutlass_scaled_fp4_mm", cutlass_scaled_fp4_mm);
m.def("scaled_fp4_quant", scaled_fp4_quant);

/*
* From csrc/moe
*/
m.def(
"moe_align_block_size(Tensor topk_ids, int num_experts, int block_size, Tensor! sorted_token_ids, Tensor! "
"experts_ids, Tensor! num_tokens_post_pad, Tensor! token_cnts_buffer, Tensor! cumsum_buffer) -> ()");
m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);

m.def(
"topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor! "
"token_expert_indices, Tensor gating_output) -> ()");
m.impl("topk_softmax", torch::kCUDA, &topk_softmax);
m.def("moe_align_block_size", moe_align_block_size);
m.def("topk_softmax", topk_softmax);

m.def(
"moe_fused_gate(Tensor input, Tensor bias, int num_expert_group, int topk_group, int topk) -> "
Expand All @@ -146,62 +74,20 @@ TORCH_LIBRARY_EXPAND(sgl_kernel, m) {
/*
* From csrc/speculative
*/
m.def(
"tree_speculative_sampling_target_only(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
"Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
"Tensor uniform_samples, Tensor target_probs, Tensor draft_probs, "
"float threshold_single, float threshold_acc, "
"bool deterministic, int cuda_stream) -> ()");
m.impl("tree_speculative_sampling_target_only", torch::kCUDA, &tree_speculative_sampling_target_only);

m.def(
"verify_tree_greedy(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
"Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
"Tensor target_predict, int cuda_stream) -> ()");
m.impl("verify_tree_greedy", torch::kCUDA, &verify_tree_greedy);

m.def(
"build_tree_kernel_efficient(Tensor parent_list, Tensor selected_index, Tensor verified_seq_len, "
"Tensor! tree_mask, Tensor! positions, Tensor! retrive_index, Tensor! retrive_next_token, "
"Tensor! retrive_next_sibling, int topk, int depth, int draft_token_num) -> ()");
m.impl("build_tree_kernel_efficient", torch::kCUDA, &build_tree_kernel_efficient);

m.def("segment_packbits(Tensor x, Tensor input_indptr, Tensor output_indptr, Tensor! y, int cuda_stream) -> ()");
m.impl("segment_packbits", torch::kCUDA, &segment_packbits);
m.def("tree_speculative_sampling_target_only", tree_speculative_sampling_target_only);
m.def("verify_tree_greedy", verify_tree_greedy);
m.def("build_tree_kernel_efficient", build_tree_kernel_efficient);
m.def("segment_packbits", segment_packbits);

/*
* From FlashInfer
*/
m.def(
"bmm_fp8(Tensor A, Tensor B, Tensor! D, Tensor A_scale, Tensor B_scale, Tensor workspace_buffer, int "
"cublas_handle, int cuda_stream) -> ()");
m.impl("bmm_fp8", torch::kCUDA, &bmm_fp8);

m.def(
"min_p_sampling_from_probs(Tensor probs, Tensor uniform_samples, Tensor! samples, Tensor? maybe_min_p_arr, float "
"min_p_val, bool deterministic, int cuda_stream) -> ()");
m.impl("min_p_sampling_from_probs", torch::kCUDA, &min_p_sampling_from_probs);

m.def(
"top_k_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_k_arr, int top_k_val, int "
"cuda_stream) -> ()");
m.impl("top_k_renorm_probs", torch::kCUDA, &top_k_renorm_probs);

m.def(
"top_p_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_p_arr, float top_p_val, int "
"cuda_stream) -> ()");
m.impl("top_p_renorm_probs", torch::kCUDA, &top_p_renorm_probs);

m.def(
"top_k_top_p_sampling_from_probs(Tensor probs, Tensor uniform_samples, Tensor! samples, Tensor! success, Tensor? "
"maybe_top_k_arr, float top_k_val, Tensor? maybe_top_p_arr, float top_p_val, bool deterministic, int "
"cuda_stream) -> ()");
m.impl("top_k_top_p_sampling_from_probs", torch::kCUDA, &top_k_top_p_sampling_from_probs);

m.def(
"top_p_sampling_from_probs(Tensor probs, Tensor uniform_samples, Tensor! samples, Tensor! success, Tensor? "
"maybe_top_p_arr, float top_p_val, bool deterministic, int cuda_stream) -> ()");
m.impl("top_p_sampling_from_probs", torch::kCUDA, &top_p_sampling_from_probs);
m.def("bmm_fp8", bmm_fp8);
m.def("min_p_sampling_from_probs", min_p_sampling_from_probs);
m.def("top_k_renorm_probs", top_k_renorm_probs);
m.def("top_p_renorm_probs", top_p_renorm_probs);
m.def("top_k_top_p_sampling_from_probs", top_k_top_p_sampling_from_probs);
m.def("top_p_sampling_from_probs", top_p_sampling_from_probs);
}

REGISTER_EXTENSION(common_ops)
16 changes: 8 additions & 8 deletions sgl-kernel/python/sgl_kernel/elementwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,12 +142,12 @@ def apply_rope_with_cos_sin_cache_inplace(
raise ValueError("cos_sin_cache should be float32")

torch.ops.sgl_kernel.apply_rope_pos_ids_cos_sin_cache.default(
q=query.view(query.shape[0], -1, head_size),
k=key.view(key.shape[0], -1, head_size),
q_rope=query.view(query.shape[0], -1, head_size),
k_rope=key.view(key.shape[0], -1, head_size),
cos_sin_cache=cos_sin_cache,
pos_ids=positions.long(),
interleave=(not is_neox),
cuda_stream=get_cuda_stream(),
query.view(query.shape[0], -1, head_size),
key.view(key.shape[0], -1, head_size),
query.view(query.shape[0], -1, head_size),
key.view(key.shape[0], -1, head_size),
cos_sin_cache,
positions.long(),
(not is_neox),
get_cuda_stream(),
)
Loading