Skip to content
Merged
234 changes: 115 additions & 119 deletions python/sglang/srt/managers/cache_controller.py
Original file line number Diff line number Diff line change
Expand Up @@ -268,98 +268,97 @@ def write_thread_func_direct(self):
"""
Directly write through KV caches to host memory without buffering.
"""
with torch.cuda.stream(self.write_stream):
while not self.stop_event.is_set():
try:
operation = self.write_queue.get(block=True, timeout=1)
self.mem_pool_host.write_page_all_layers(
operation.host_indices,
operation.device_indices,
self.mem_pool_device,
)
self.write_stream.synchronize()
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_write_queue.put(node_id)
except Empty:
continue
except Exception as e:
logger.error(e)
torch.cuda.set_stream(self.write_stream)
while not self.stop_event.is_set():
try:
operation = self.write_queue.get(block=True, timeout=1)
self.mem_pool_host.write_page_all_layers(
operation.host_indices,
operation.device_indices,
self.mem_pool_device,
)
self.write_stream.synchronize()
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_write_queue.put(node_id)
except Empty:
continue
except Exception as e:
logger.error(e)

def load_thread_func_direct(self):
"""
Directly load KV caches from host memory to device memory without buffering.
"""
with torch.cuda.stream(self.load_stream):
while not self.stop_event.is_set():
try:
operation = self.load_queue.get(block=True, timeout=1)
# time.sleep(18e-6 * len(operation.host_indices))
operation.data = self.mem_pool_host.get_flat_data(
operation.host_indices
)
self.mem_pool_device.transfer(
operation.device_indices, operation.data
)
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_load_queue.put(node_id)
except Empty:
continue
except Exception as e:
logger.error(e)
torch.cuda.set_stream(self.load_stream)
while not self.stop_event.is_set():
try:
operation = self.load_queue.get(block=True, timeout=1)
# time.sleep(18e-6 * len(operation.host_indices))
operation.data = self.mem_pool_host.get_flat_data(
operation.host_indices
)
self.mem_pool_device.transfer(operation.device_indices, operation.data)
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_load_queue.put(node_id)
except Empty:
continue
except Exception as e:
logger.error(e)

def load_thread_func_layer_by_layer(self):
"""
Load KV caches from host memory to device memory layer by layer.
"""
with torch.cuda.stream(self.load_stream):
while not self.stop_event.is_set():
self.load_cache_event.wait(timeout=1)
if not self.load_cache_event.is_set():
continue
self.load_cache_event.clear()
torch.cuda.set_stream(self.load_stream)
while not self.stop_event.is_set():
self.load_cache_event.wait(timeout=1)
if not self.load_cache_event.is_set():
continue
self.load_cache_event.clear()

batch_operation = None
while self.load_queue.qsize() > 0:
op = self.load_queue.get(block=True)
if batch_operation is None:
batch_operation = op
else:
batch_operation.merge(op)
batch_operation = None
while self.load_queue.qsize() > 0:
op = self.load_queue.get(block=True)
if batch_operation is None:
continue
batch_operation = op
else:
batch_operation.merge(op)
if batch_operation is None:
continue

self.layer_done_counter.reset()
for i in range(self.mem_pool_host.layer_num):
if self.page_size == 1:
flat_data = self.mem_pool_host.get_flat_data_by_layer(
batch_operation.host_indices, i
)
self.mem_pool_device.transfer_per_layer(
batch_operation.device_indices, flat_data, i
)
else:
self.mem_pool_host.load_page_per_layer(
batch_operation.host_indices,
batch_operation.device_indices,
self.mem_pool_device,
i,
)
self.load_stream.synchronize()
self.layer_done_counter.increment()

self.mem_pool_host.complete_io(batch_operation.host_indices)
for node_id in batch_operation.node_ids:
if node_id != 0:
self.ack_load_queue.put(node_id)
self.layer_done_counter.reset()
for i in range(self.mem_pool_host.layer_num):
if self.page_size == 1:
flat_data = self.mem_pool_host.get_flat_data_by_layer(
batch_operation.host_indices, i
)
self.mem_pool_device.transfer_per_layer(
batch_operation.device_indices, flat_data, i
)
else:
self.mem_pool_host.load_page_per_layer(
batch_operation.host_indices,
batch_operation.device_indices,
self.mem_pool_device,
i,
)
self.load_stream.synchronize()
self.layer_done_counter.increment()

self.mem_pool_host.complete_io(batch_operation.host_indices)
for node_id in batch_operation.node_ids:
if node_id != 0:
self.ack_load_queue.put(node_id)

def write_aux_func(self, no_wait=False):
"""
Auxiliary function to prepare the buffer for write operations.
"""
torch.cuda.set_stream(self.write_stream)

def _to_op(op_):
assert op_.device_indices.is_cuda, "Device indices should be on GPU"
Expand All @@ -370,44 +369,42 @@ def _to_op(op_):
return op_

buffer = None
with torch.cuda.stream(self.write_stream):
while not self.stop_event.is_set():
try:
operation = self.write_queue.get(block=True, timeout=1)
factor = (
len(operation.device_indices)
// self.write_buffer.max_buffer_size
)
while not self.stop_event.is_set():
try:
operation = self.write_queue.get(block=True, timeout=1)
factor = (
len(operation.device_indices) // self.write_buffer.max_buffer_size
)

if factor >= 1:
if buffer is not None:
_to_op(buffer)
buffer = None

if factor < 2:
_to_op(operation)
else:
split_ops = operation.split(factor)
for op_ in split_ops:
_to_op(op_)
continue

if buffer is None:
buffer = operation
else:
buffer.merge(operation)
if (
no_wait
or len(buffer.host_indices) >= self.write_buffer.max_buffer_size
or self.write_queue.empty()
or self.write_buffer.empty()
):
if factor >= 1:
if buffer is not None:
_to_op(buffer)
buffer = None
except Empty:

if factor < 2:
_to_op(operation)
else:
split_ops = operation.split(factor)
for op_ in split_ops:
_to_op(op_)
continue
except Exception as e:
logger.error(e)

if buffer is None:
buffer = operation
else:
buffer.merge(operation)
if (
no_wait
or len(buffer.host_indices) >= self.write_buffer.max_buffer_size
or self.write_queue.empty()
or self.write_buffer.empty()
):
_to_op(buffer)
buffer = None
except Empty:
continue
except Exception as e:
logger.error(e)

def load_aux_func(self):
"""
Expand Down Expand Up @@ -484,19 +481,18 @@ def write_thread_func_buffer(self):
aux_thread.join()

def load_thread_func_buffer(self):
torch.cuda.set_stream(self.load_stream)
aux_thread = threading.Thread(target=self.load_aux_func, daemon=True)
aux_thread.start()

with torch.cuda.stream(self.load_stream):
while not self.stop_event.is_set():
operation = self.load_buffer.get()
if operation is None:
continue
self.mem_pool_device.transfer(operation.device_indices, operation.data)
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_load_queue.put(node_id)
while not self.stop_event.is_set():
operation = self.load_buffer.get()
if operation is None:
continue
self.mem_pool_device.transfer(operation.device_indices, operation.data)
self.mem_pool_host.complete_io(operation.host_indices)
for node_id in operation.node_ids:
if node_id != 0:
self.ack_load_queue.put(node_id)
aux_thread.join()

def evict_device(
Expand Down
Loading