Skip to content

Conversation

ch-wan
Copy link
Collaborator

@ch-wan ch-wan commented May 30, 2025

Motivation

When block quant is not in use, EPMoE returns incorrect responses.

Modifications

Checklist

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hello @ch-wan, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed!

Summary of Changes

Hello! Gemini here, providing a summary of this pull request to help everyone quickly understand the changes.

This PR, authored by ch-wan, aims to fix a bug in the grouped-gemm Triton kernel used within the EPMoE (Expert Parallel Mixture of Experts) layer. According to the description, the bug causes incorrect responses when block quantization is not being used. The core change involves correcting how the scaling factor (scale_a) is loaded within the kernel to ensure it uses the correct index based on the current block's position rather than just the expert ID.

Highlights

  • Bug Fix: Addresses an issue in the EPMoE layer where incorrect responses are produced when block quantization is disabled.
  • Triton Kernel Update: Modifies the grouped_gemm_triton_kernel to correctly load the scale_a scaling factor using the block's position (m_range_start + offs_am) instead of just the expert_id under specific conditions (use_fp8_w8a8 is true and group_k/group_n are not both positive).

Changelog

  • python/sglang/srt/layers/moe/ep_moe/kernels.py
    • Corrected the indexing logic for loading the scale_a scaling factor in the grouped_gemm_triton_kernel function (line 624) when using FP8 weights/activations without specific grouping conditions. This change ensures the correct scale is applied to the accumulator based on the current block being processed.
Using Gemini Code Assist

The full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips.

Invoking Gemini

You can request assistance from Gemini at any point in your pull request via creating an issue comment (i.e. comment on the pull request page) using either /gemini <command> or @gemini-code-assist <command>. Below is a summary of the supported commands.

Feature Command Description
Code Review /gemini review Performs a code review for the current pull request in its current state.
Pull Request Summary /gemini summary Provides a summary of the current pull request in its current state.
Comment @gemini-code-assist Responds in comments when explicitly tagged, both in issue comments and review comments.
Help /gemini help Displays a list of available commands.

Customization

To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a .gemini/ folder in the base of the repository. Detailed instructions can be found here.

Limitations & Feedback

Gemini Code Assist is currently in preview and may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments to provide feedback.

You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension.


A kernel's tiny fix,
Scales loaded, no more tricks.
MoE runs true,
Responses new,
No bugs in the matrix.

Footnotes

  1. Review the Privacy Notices, Generative AI Prohibited Use Policy, Terms of Service, and learn how to configure Gemini Code Assist in GitHub here. Gemini can make mistakes, so double check it and use code with caution.

@zhyncs
Copy link
Member

zhyncs commented May 30, 2025

When block quant is not in use

which use case?

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code Review

This pull request aims to fix a bug in the grouped_gemm_triton_kernel related to incorrect responses when block quantization is not used in EPMoE. The change modifies how scale_a_value is loaded. While the intent is to fix a bug, the change introduces a potential critical issue if the scale_a tensor is not structured as per-token scales, and also highlights an inconsistency with how activation scales appear to be computed and used in the calling EPMoE layer.

Summary of Findings

  • Potential Out-of-Bounds Read and Scale Consistency: The change to load scale_a_value using per-token indices (scale_a + m_range_start + offs_am[:, None]) in grouped_gemm_triton_kernel is correct if and only if the scale_a tensor is structured as per-token scales. If scale_a is a smaller per-expert tensor (as suggested by its current calculation in EPMoE.forward), this change could lead to critical out-of-bounds memory access. Furthermore, for the dequantization to be correct, the initial quantization of activations must also use corresponding per-token scales, which seems inconsistent with how pre_reorder_triton_kernel currently uses scale_a.

Merge Readiness

The pull request addresses an issue with incorrect responses, but the proposed change introduces a significant risk of out-of-bounds memory access if the scale_a tensor is not structured as per-token. There also appear to be inconsistencies with how activation scales are computed and used in related parts of the code.

Due to the critical nature of the potential OOB read and the identified inconsistencies, I recommend that these concerns be thoroughly investigated and addressed before merging. I am unable to approve the pull request in its current state; further review and validation by others are necessary.

@@ -621,7 +621,7 @@ def grouped_gemm_triton_kernel(
b_ptr += BLOCK_SIZE_K

if use_fp8_w8a8 and not (group_k > 0 and group_n > 0):
scale_a_value = tl.load(scale_a + expert_id)
scale_a_value = tl.load(scale_a + m_range_start + offs_am[:, None])
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

critical

This change modifies scale_a_value to be loaded using per-token indexing (m_range_start + offs_am[:, None]). This implies that the scale_a tensor (which originates from self.w13_input_scale or self.w2_input_scale in layer.py) is expected to be a 1D tensor containing per-token scale factors.

However, there are a few concerns:

  1. Potential Out-of-Bounds Access: If scale_a is actually a smaller, per-expert scale tensor (as suggested by its calculation in EPMoE.forward at layer.py#L262-L268, where it's derived from torch.max(hidden_states) and has shape (num_experts_per_partition,)), then indexing it with global token indices (m_range_start + offs_am) could lead to out-of-bounds memory access, which is a critical issue.
  2. Consistency with Activation Quantization: For this per-token dequantization to be correct, the activation tensor a (input to this kernel) must have been quantized using corresponding per-token scales.
    • If a is pre-quantized to FP8 by pre_reorder_triton_kernel (as suggested by gateup_input dtype in layer.py#L252-L259), then pre_reorder_triton_kernel must use per-token scales. However, its current implementation (kernels.py#L163-L173) appears to use per-expert scales (tl.load(scale_a + expert_id_cur_rank)).
    • If a is not pre-quantized (e.g., it's bf16/fp16), then this kernel performs the quantization of a in its main loop (around kernels.py#L593-L603 in the full file). The same scale_a_value (now per-token) would be used for quantizing a and later for dequantizing the accumulator. This part would be consistent if scale_a is indeed per-token.

Could you clarify the structure of the scale_a tensor in this specific scenario (use_fp8_w8a8 and not (group_k > 0 and group_n > 0)) and ensure that it is compatible with per-token indexing? If scale_a is indeed intended to be per-token, the upstream code responsible for computing w13_input_scale/w2_input_scale and its usage in pre_reorder_triton_kernel might need adjustments to ensure consistency.

@zhyncs zhyncs merged commit b581b22 into sgl-project:main May 30, 2025
3 of 41 checks passed
@Alcanderian
Copy link
Collaborator

It will cause illegal mem access in epmoefp8 test: https://github.com/sgl-project/sglang/actions/runs/15342843382/job/43197363952

Layssy pushed a commit to Layssy/sglang-iaas that referenced this pull request Jun 9, 2025
xwu-intel pushed a commit to xwu-intel/sglang that referenced this pull request Jun 17, 2025
walker-ai pushed a commit to walker-ai/sglang that referenced this pull request Jul 8, 2025
Merge branch 'sgl_20250610_sync_tag047 of git@code.alipay.com:Theta/SGLang.git into main

https://code.alipay.com/Theta/SGLang/pull_requests/52


Reviewed-by: 剑川 <jianchuan.gys@antgroup.com>


* [Bugfix] Fix slice operation when chunk size mismatch (sgl-project#6697)
* [Bugfix] Fix ChatCompletion endpoint of mini_lb when stream is set (sgl-project#6703)
* [CI] Fix setup of disaggregation with different tp (sgl-project#6706)
* [PD] Remove Unnecessary Exception Handling for FastQueue.get() (sgl-project#6712)
* Fuse routed_scaling_factor in DeepSeek (sgl-project#6710)
* Overlap two kernels in DeepSeek with communication (sgl-project#6711)
* Minor refactor two-batch overlap (sgl-project#6682)
* Speed up when having padding tokens two-batch overlap (sgl-project#6668)
* [Feature] Support Flashinfer fp8 blockwise GEMM kernel on Blackwell (sgl-project#6479)
* Fix LoRA bench (sgl-project#6719)
* temp
* Fix PP for Qwen3 MoE (sgl-project#6709)
* [feat] triton kernel for get_last_loc (sgl-project#6676)
* [fix] more mem for draft_extend cuda_graph (sgl-project#6726)
* [PD] bug fix:  Update status if nixl receiver send a a dummy req. (sgl-project#6720)
* Tune memory arguments on B200 (sgl-project#6718)
* Add DeepSeek-R1-0528 function call chat template (sgl-project#6725)
* refactor(tool call): Fix BaseFormatDetector tool_index issue and refactor `parse_streaming_increment` (sgl-project#6715)
* Add draft extend CUDA graph for Triton backend (sgl-project#6705)
* refactor apply_w8a8_block_fp8_linear in fp (sgl-project#6545)
* [PD] Support completion endpoint (sgl-project#6729)
* PD Rust LB (PO2) (sgl-project#6437)
* Super tiny enable sole usage of expert distribution metrics and update doc (sgl-project#6680)
* Support picking variants of EPLB algorithms (sgl-project#6728)
* Support tuning DeepEP configs (sgl-project#6742)
* [test] add ut and bm for get_last_loc (sgl-project#6746)
* Fix mem_fraction_static for AMD CI (sgl-project#6748)
* [fix][RL] Fix DeepSeekV3ForCausalLM.post_load_weights for multiple update weight (sgl-project#6265)
* Improve EPLB logical to physical dispatch map (sgl-project#6727)
* Update DeepSeek-R1-0528 function call chat template (sgl-project#6765)
* [PD] Optimize time out logic and add env var doc for mooncake (sgl-project#6761)
* Fix aiohttp 'Chunk too big' in bench_serving (sgl-project#6737)
* Support sliding window in triton backend (sgl-project#6509)
* Fix shared experts fusion error (sgl-project#6289)
* Fix one bug in the grouped-gemm triton kernel (sgl-project#6772)
* update llama4 chat template and pythonic parser (sgl-project#6679)
* feat(tool call): Enhance Llama32Detector for improved JSON parsing in non-stream (sgl-project#6784)
* Support token-level quantization for EP MoE (sgl-project#6782)
* Temporarily lower mmlu threshold for triton sliding window backend (sgl-project#6785)
* ci: relax test_function_call_required (sgl-project#6786)
* Add intel_amx backend for Radix Attention for CPU (sgl-project#6408)
* Fix incorrect LoRA weight loading for fused gate_up_proj (sgl-project#6734)
* fix(PD-disaggregation): Can not get local ip (sgl-project#6792)
* [FIX] mmmu bench serving result display error (sgl-project#6525) (sgl-project#6791)
* Bump torch to 2.7.0 (sgl-project#6788)
* chore: bump sgl-kernel v0.1.5 (sgl-project#6794)
* Improve profiler and integrate profiler in bench_one_batch_server (sgl-project#6787)
* chore: upgrade sgl-kernel v0.1.5 (sgl-project#6795)
* [Minor] Always append newline after image token when parsing chat message (sgl-project#6797)
* Update CI tests for Llama4 models (sgl-project#6421)
* [Feat] Enable PDL automatically on Hopper architecture (sgl-project#5981)
* chore: update blackwell docker (sgl-project#6800)
* misc: cache is_hopper_arch (sgl-project#6799)
* Remove contiguous before Flashinfer groupwise fp8 gemm (sgl-project#6804)
* Correctly abort the failed grammar requests & Improve the handling of abort (sgl-project#6803)
* [EP] Add cuda kernel for moe_ep_pre_reorder (sgl-project#6699)
* Add draft extend CUDA graph for flashinfer backend  (sgl-project#6805)
* Refactor CustomOp to avoid confusing bugs (sgl-project#5382)
* Tiny log prefill time (sgl-project#6780)
* Tiny fix EPLB assertion about rebalancing period and recorder window size (sgl-project#6813)
* Add simple utility to dump tensors for debugging (sgl-project#6815)
* Fix profiles do not have consistent names (sgl-project#6811)
* Speed up rebalancing when using non-static dispatch algorithms (sgl-project#6812)
* [1/2] Add Kernel support for Cutlass based Fused FP4 MoE (sgl-project#6093)
* [Router] Fix k8s Service Discovery (sgl-project#6766)
* Add CPU optimized kernels for topk and rope fusions  (sgl-project#6456)
* fix new_page_count_next_decode (sgl-project#6671)
* Fix wrong weight reference in dynamic EPLB (sgl-project#6818)
* Minor add metrics to expert location updater (sgl-project#6816)
* [Refactor] Rename `n_share_experts_fusion` as `num_fused_shared_experts` (sgl-project#6735)
* [FEAT] Add transformers backend support  (sgl-project#5929)
* [fix] recover auto-dispatch for rmsnorm and rope (sgl-project#6745)
* fix ep_moe_reorder kernel bugs (sgl-project#6858)
* [Refactor] Multimodal data processing for VLM (sgl-project#6659)
* Decoder-only Scoring API (sgl-project#6460)
* feat: add dp-rank to KV events (sgl-project#6852)
* Set `num_fused_shared_experts` as `num_shared_experts` when shared_experts fusion is not disabled (sgl-project#6736)
* Fix one missing arg in DeepEP (sgl-project#6878)
* Support LoRA in TestOpenAIVisionServer and fix fused kv_proj loading bug. (sgl-project#6861)
* support 1 shot allreduce  in 1-node and 2-node using mscclpp (sgl-project#6277)
* Fix Qwen3MoE missing token padding optimization (sgl-project#6820)
* Tiny update error hints (sgl-project#6846)
* Support layerwise rebalancing experts (sgl-project#6851)
* Tiny allow profiler API to auto create directory (sgl-project#6865)
* Support Blackwell DeepEP docker images (sgl-project#6868)
* [EP] Add cuda kernel for moe_ep_post_reorder (sgl-project#6837)
* [theta]merge 0605
* oai: fix openAI client error with single request via batch api (sgl-project#6170)
* [PD] Fix potential perf spike caused by tracker gc and optimize doc (sgl-project#6764)
* Use deepgemm instead of triton for fused_qkv_a_proj_with_mqa (sgl-project#6890)
* [CUTLASS-FP4-MOE]  Introduce CutlassMoEParams class for easy initialization of Cutlass Grouped Gems Metadata (sgl-project#6887)
* bugfix(OAI): Fix image_data processing for jinja chat templates (sgl-project#6877)
* [CPU] enable CI for PRs, add Dockerfile and auto build task (sgl-project#6458)
* AITER backend extension and workload optimizations (sgl-project#6838)
* [theta]merge
* [theta]merge
* [Feature] Support Flashinfer fmha on Blackwell (sgl-project#6930)
* Fix a bug in abort & Improve docstrings for abort (sgl-project#6931)
* Tiny support customize DeepEP max dispatch tokens per rank (sgl-project#6934)
* Sync the changes on cuda graph runners (sgl-project#6932)
* [PD] Optimize transfer queue forward logic for dummy rank (sgl-project#6922)
* [Refactor] image data process in bench_serving (sgl-project#6879)
* [fix] logical_to_all_physical_map index 256 is out of bounds in EP parallel. (sgl-project#6767)
* Add triton fused moe kernel config for E=257 on B200 (sgl-project#6939)
* [sgl-kernel] update deepgemm (sgl-project#6942)
* chore: bump sgl-kernel v0.1.6 (sgl-project#6943)
* Minor compile fused topk (sgl-project#6944)
* [Bugfix] pipeline parallelism and Eagle Qwen2 (sgl-project#6910)
* Tiny re-introduce profile id logging (sgl-project#6912)
* Add triton version as a fused_moe_triton config search key to avoid performace decrease in different Triton version (sgl-project#5955)
* reduce torch.zeros overhead in moe align block size kernel (sgl-project#6369)
* chore: upgrade sgl-kernel v0.1.6 (sgl-project#6945)
* add fbgemm moe grouped gemm kernel benchmark (sgl-project#6924)
* [Docker] Add docker file for SGL Router (sgl-project#6915)
* Disabling mixed chunked prefill when eagle is enabled (sgl-project#6874)
* Add canary for EPLB rebalancing (sgl-project#6895)
* Refactor global_server_args_dict (sgl-project#6866)
* Fuse routed scaling factor in topk_reduce kernel (sgl-project#6220)
* Update server timeout time in AMD CI. (sgl-project#6953)
* [misc] add is_cpu() (sgl-project#6950)
* Add H20 fused MoE kernel tuning configs for DeepSeek-R1/V3 (sgl-project#6885)
* Add a CUDA kernel for fusing mapping and weighted sum for MoE. (sgl-project#6916)
* chore: bump sgl-kernel v0.1.6.post1 (sgl-project#6955)
* chore: upgrade sgl-kernel v0.1.6.post1 (sgl-project#6957)
* [DeepseekR1-FP4] Add Support for nvidia/DeepSeekR1-FP4 model (sgl-project#6853)
* Revert "Fuse routed scaling factor in topk_reduce kernel (sgl-project#6220)" (sgl-project#6968)
* [AMD] Add more tests to per-commit-amd (sgl-project#6926)
* chore: bump sgl-kernel v0.1.7 (sgl-project#6963)
* Slightly improve the sampler to skip unnecessary steps (sgl-project#6956)
* rebase h20 fused_moe config (sgl-project#6966)
* Fix CI and triton moe Configs (sgl-project#6974)
* Remove unnecessary kernels of num_token_non_padded (sgl-project#6965)
* Extend cuda graph capture bs for B200 (sgl-project#6937)
* Fuse routed scaling factor in deepseek (sgl-project#6970)
* Sync cuda graph runners (sgl-project#6976)
* Fix draft extend ut stability with flush cache (sgl-project#6979)
* Fix triton sliding window test case (sgl-project#6981)
* Fix expert distribution dumping causes OOM (sgl-project#6967)
* Minor remove one kernel for DeepSeek (sgl-project#6977)
* [perf][sgl-kernel] extend cutlass_mla_decode to support num_head < 128 (sgl-project#6929)
* Enable more unit tests for AMD CI. (sgl-project#6983)
* Use torch.compile to fuse flash attention decode metadata preparation (sgl-project#6973)
* Eliminate stream sync to speed up LoRA batch init  (sgl-project#6960)
* support qwen3 emebedding (sgl-project#6990)
* Fix torch profiler bugs for bench_offline_throughput.py (sgl-project#6557)
* chore: upgrade flashinfer v0.2.6.post1 jit (sgl-project#6958)
* cleanup tmp dir (sgl-project#7007)
* chore: update pr test xeon (sgl-project#7008)
* Fix cutlass MLA gets almost zero accuracy (sgl-project#6998)
* Update amd nightly models CI. (sgl-project#6992)
* feat: add direct routing strategy to DP worker (sgl-project#6884)
* Fallback to lower triton version for unfound fused moe configs (sgl-project#7013)
* Fix torchvision version for Blackwell (sgl-project#7015)
* Simplify prepare_extend_after_decode (sgl-project#6987)
* Migrate to assertEqual (sgl-project#6741)
* Fix torch version in blackwell dockerfile (sgl-project#7017)
* chore: update pr test xeon (sgl-project#7018)
* Update default settings for blackwell (sgl-project#7023)
* Support both approximate and exact expert distribution collection (sgl-project#6964)
* Add decode req pool (sgl-project#6980)
* [theta]merge 0610
* [theta]merge 0610
* [CI] Add CI workflow for sgl-router docker build (sgl-project#7027)
* Fix fused_moe triton configs (sgl-project#7029)
* CPU: map changes from developing branch in sgl-kernel (sgl-project#6833)
* chore: bump v0.4.7 (sgl-project#7038)
* Update README.md (sgl-project#7040)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants