-
Notifications
You must be signed in to change notification settings - Fork 257
MatrixFactorizations Package #3948
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
kellerlv
wants to merge
4
commits into
Macaulay2:development
Choose a base branch
from
kellerlv:MatrixFactorizations
base: development
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -288,3 +288,4 @@ AllMarkovBases | |
Tableaux | ||
CpMackeyFunctors | ||
JSONRPC | ||
MatrixFactorizations |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
newPackage( | ||
"MatrixFactorizations", | ||
AuxiliaryFiles => true -*may need to change*-, | ||
Version => "0.1", | ||
Date => "August 13, 2025", | ||
Authors => { | ||
{Name => "David Favero", | ||
Email => "favero@umn.edu", | ||
HomePage => ""}, | ||
{Name=> "Sasha Pevzner", | ||
Email => "pevzn002@umn.edu", | ||
HomePage => ""}, | ||
{Name => "Timothy Tribone", | ||
Email => "tim.tribone@utah.edu", | ||
HomePage => ""}, | ||
{Name => "Keller VandeBogert", | ||
Email => "kvandebo@nd.edu", | ||
HomePage => "https://sites.google.com/view/kellervandebogert/home"} | ||
}, | ||
Headline => "computing with matrix factorizations of different lengths", | ||
Keywords => {"Commutative Algebra", "Homological Algebra"}, | ||
PackageExports => { | ||
"Complexes", | ||
--"CompleteIntersectionResolutions", | ||
--"TensorComplexes" | ||
}, | ||
PackageImports => { | ||
"Complexes", | ||
"CompleteIntersectionResolutions", | ||
"PushForward", | ||
"TensorComplexes" | ||
} | ||
) | ||
|
||
export{"ZZdFactorization", | ||
"ZZdFactorizationMap", | ||
"period", | ||
"ZZdfactorization", | ||
"Fold", | ||
"isFactorizationMorphism", | ||
--"dHom", | ||
"randomFactorizationMap", | ||
"rootOfUnity", | ||
"RootOfUnity", | ||
"isZZdComplex", | ||
--MF_Functions | ||
"WellDefined", | ||
"collapseMF", | ||
"fullCollapse", | ||
"isdFactorization", | ||
"tailMF", | ||
"randomTailMF", | ||
"randomLinearMF", | ||
"monomialMF", | ||
"koszulMF", | ||
"eulerMF", | ||
"adjoinRoot", | ||
--"dTensor", | ||
--"eulerChi", | ||
"unfold", | ||
--"dDual", | ||
--"dShift", | ||
"linearMF", | ||
--"trivialFactorization", | ||
--"linearFactorization", | ||
--"randomFactorization", | ||
"potential", | ||
"projectiveCover", | ||
"injectiveCover", | ||
"suspension", | ||
"trivialMF", | ||
--CIResCompatibility.m2 | ||
"higherHomotopyFactorization", | ||
"toBranchedCover", | ||
"branchedToMF", | ||
"mooreMF", | ||
"rk1MCM2gen", | ||
"adjointFactorization", | ||
"zeroOutDegrees" | ||
} | ||
|
||
------------------------------------------------------------------------------ | ||
------------------------------------------------------------------------------ | ||
-- **CODE** -- | ||
------------------------------------------------------------------------------ | ||
------------------------------------------------------------------------------ | ||
--debug needsPackage "Complexes" | ||
load "./MatrixFactorizations/ZZdFactorizations.m2" | ||
load "./MatrixFactorizations/MF_functions.m2" | ||
load "./MatrixFactorizations/CIResCompatibility.m2" | ||
|
||
--load "./MatrixFactorizations/ZZdFactorizations.m2" | ||
-*load "./Matrix-Factorizations/chernCharacter.m2" | ||
load "./Matrix-Factorizations/CIResCompatibility.m2" | ||
load "./Matrix-Factorizations/Compositions.m2" | ||
load "./Matrix-Factorizations/eisenbud-schreyer-examples.m2" | ||
load "./Matrix-Factorizations/functionsMF_new.m2"*- | ||
------------------------------------------------------------------------------ | ||
------------------------------------------------------------------------------ | ||
-- **DOCUMENTATION** -- | ||
------------------------------------------------------------------------------ | ||
------------------------------------------------------------------------------ | ||
beginDocumentation () | ||
|
||
|
||
load "./MatrixFactorizations/MatrixFactorizationsDOC.m2" | ||
------------------------------------------------------------------------------ | ||
------------------------------------------------------------------------------ | ||
-- **TESTS** -- | ||
------------------------------------------------------------------------------ | ||
------------------------------------------------------------------------------ | ||
|
||
load "./MatrixFactorizations/KellerTests.m2" | ||
|
||
|
||
end--------------------------------------------------------------------------- | ||
|
||
------------------------------------------------------------------------------ | ||
------------------------------------------------------------------------------ | ||
-- **SCRATCH SPACE** -- | ||
------------------------------------------------------------------------------ | ||
------------------------------------------------------------------------------ | ||
|
||
|
||
------------------------------------ | ||
--Development Section | ||
------------------------------------ | ||
|
||
restart | ||
uninstallPackage "MatrixFactorizations" | ||
restart | ||
debug installPackage "MatrixFactorizations" | ||
debug loadPackage("MatrixFactorizations",Reload => true, LoadDocumentation => true) | ||
restart | ||
needsPackage "MatrixFactorizations" | ||
elapsedTime check "MatrixFactorizations" | ||
viewHelp "MatrixFactorizations" |
240 changes: 240 additions & 0 deletions
240
M2/Macaulay2/packages/MatrixFactorizations/CIResCompatibility.m2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,240 @@ | ||
--needsPackage "CompleteIntersectionResolutions" | ||
--needsPackage "PushForward" | ||
|
||
Matrix Array := Matrix => (M,L) -> ((M^[L_0])_[L_1]) | ||
|
||
higherHomotopyFactorization = method(); | ||
higherHomotopyFactorization(List,Complex) := (L,C) -> ( | ||
Q := ring L_0; | ||
t := local t; | ||
S := Q[t_1..t_(length L)]; | ||
f := sum(1..length L,i->L_(i-1)*t_i); | ||
C = C**S; | ||
H := makeHomotopies(matrix{{f}}, (C)); | ||
Ln := apply(keys H,i->(i_1+2*(i_0)_0-1,i_1)); | ||
Hn := new HashTable from for i from 0 to length Ln-1 list Ln_i => H#((keys H)#i); | ||
(lo,hi) := concentration C; | ||
Lo := select(toList(lo-1..hi+1),odd); | ||
Le := select(toList(lo-1..hi+1),even); | ||
T1 := table(Lo,Le,(u,v) -> | ||
if Hn#?(u,v) then map(C_u,C_v,Hn#(u,v)) else 0); | ||
T2 := table(Le,Lo,(u,v) -> | ||
if Hn#?(u,v) then map(C_u,C_v,Hn#(u,v)) else 0); | ||
Co := directSum apply(Lo,i->i => C_i); | ||
Ce := directSum apply(Le,i->i => C_i); | ||
M1 := map(Ce,Co,matrix T2); | ||
M2 := map(Co,Ce,matrix T1); | ||
ZZdfactorization {M1,M2} | ||
) | ||
|
||
higherHomotopyFactorization(RingElement,Complex) := (f,C) -> ( | ||
H := makeHomotopies(matrix{{f}}, (C)); | ||
Ln := apply(keys H,i->(i_1+2*(i_0)_0-1,i_1)); | ||
Hn := new HashTable from for i from 0 to length Ln-1 list Ln_i => H#((keys H)#i); | ||
(lo,hi) := concentration C; | ||
Lo := select(toList(lo-1..hi+1),odd); | ||
Le := select(toList(lo-1..hi+1),even); | ||
T1 := table(Lo,Le,(u,v) -> | ||
if Hn#?(u,v) then map(C_u,C_v,Hn#(u,v)) else 0); | ||
T2 := table(Le,Lo,(u,v) -> | ||
if Hn#?(u,v) then map(C_u,C_v,Hn#(u,v)) else 0); | ||
Co := directSum apply(Lo,i-> i => C_i); | ||
Ce := directSum apply(Le,i-> i => C_i); | ||
M1 := map(Ce,Co,matrix T2); | ||
M2 := map(Co,Ce,matrix T1); | ||
ZZdfactorization {M1,M2} | ||
) | ||
|
||
--do higher homotopy factorization coming from a non-resolution | ||
--do example that contradicts the h(F**F) <= h(F) beta(F) | ||
|
||
toBranchedCover = method(); | ||
toBranchedCover(ZZdFactorization,Symbol) := (C,z) -> (Q := ring C; | ||
--code assumes the input is a well-defined factorization | ||
if not((unique flatten degrees Q)=={0}) then error "Variables from ambient ring should have degree 0"; | ||
d := period C; | ||
if d==2 then Q.rootOfUnity = -1; | ||
if Q.?rootOfUnity then t:=Q.rootOfUnity | ||
else error "Need to adjoin dth root of unity"; | ||
P := product(d,i->C.dd_i); | ||
f := sub(P_(0,0),Q); | ||
S := Q[z]; | ||
zn := (S_*)_0; | ||
Sk := S/(zn^d+sub(f,S)); | ||
use Sk; | ||
T := table(toList(0..d-1),toList(0..d-1),(u,v) -> | ||
if u==v then sub(t^(u),Sk)*zn*id_(sub(C_u,Sk)) | ||
else if u==(v-1)%d then sub(C.dd_u,Q) | ||
else 0 | ||
); | ||
Cterms := directSum for i to d-1 list C_i**Sk; | ||
map(Cterms,Cterms,sub(matrix T,Sk)) | ||
) | ||
|
||
toBranchedCover(ZZdFactorization,RingElement) := (C,z) -> (toBranchedCover(C,getSymbol "z")) | ||
|
||
--this redefines the ring to have all variables degree 0 | ||
zeroOutDegrees = method(); | ||
zeroOutDegrees(Ring) := R -> (n := length gens R; | ||
(baseRing R)[R_*,Degrees => toList(n:0)] | ||
) | ||
|
||
zeroOutDegrees(ZZdFactorization) := C -> (Rn := zeroOutDegrees ring C; | ||
phi := map(Rn,ring C); | ||
phi(C) | ||
) | ||
|
||
degreeSorter = method(); | ||
degreeSorter(ZZ,Module) := (d,M) -> (theDegs := degrees M; | ||
flatten for j to d-1 list positions(theDegs,i->(i_0%d == j)) | ||
) | ||
|
||
degreeSorter(ZZ,ZZ,Module) := (d,s,M) -> (theDegs := degrees M; | ||
flatten for j to d-1 list positions(theDegs,i->(i_0%d == (j+s)%d)) | ||
) | ||
|
||
degreeSorter(ZZ,Matrix) := (d,M) -> (L1 := degreeSorter(d,source M); | ||
L2 := degreeSorter(d,target M); | ||
(M_L1)^L2 | ||
) | ||
|
||
degreeSorter(ZZ,ZZ,Matrix) := (d,deg,M) -> (L1 := degreeSorter(d,source M); | ||
L2 := degreeSorter(d,deg,target M); | ||
(M_L1)^L2 | ||
) | ||
|
||
|
||
branchedToMF = method(); | ||
branchedToMF(Module) := ZZdFactorization => M -> (R := ring M; | ||
d := first degree (R.relations_(0,0)); | ||
zn := (R_*)_0; | ||
phi := map(R,baseRing ambient R); | ||
T := matrix pushFwd(phi,zn*id_M); | ||
ZZdfactorization toList(d:T) | ||
) | ||
|
||
branchedToMF(Module,Ring) := ZZdFactorization => (M,Q) -> (R := ring M; | ||
d := first degree (R.relations_(0,0)); | ||
zn := (R_*)_0; | ||
phi := map(R, Q); | ||
T := sub(matrix pushFwd(phi,zn*id_M), Q); | ||
ZZdfactorization toList(d:T) | ||
) | ||
|
||
branchedToMF(Matrix) := ZZdFactorization => M -> (R := ring M; | ||
d := first degree (R.relations_(0,0)); | ||
zn := (R_*)_0; | ||
phi := map(R,baseRing ambient R); | ||
Mn := degreeSorter(d,-1,M); | ||
T := matrix pushFwd(phi,zn*id_(prune coker Mn)); | ||
ZZdfactorization toList(d:T) | ||
) | ||
|
||
branchedToMF(Matrix,Ring) := ZZdFactorization => (M,Q) -> (R := ring M; | ||
d := first degree (R.relations_(0,0)); | ||
zn := (R_*)_0; | ||
phi := map(R, baseRing ambient R); | ||
Mn := degreeSorter(d,-1,M); | ||
T := sub(matrix pushFwd(phi,zn*id_(prune coker Mn)), Q); | ||
ZZdfactorization toList(d:T) | ||
) | ||
|
||
|
||
|
||
|
||
mooreMF = method(); | ||
mooreMF(ZZ) := p -> ( | ||
a := local a; | ||
x := local x; | ||
Q := if p==0 then QQ[a_0..a_2,x_0..x_2] else ZZ/p[a_0..a_2,x_0..x_2]; | ||
M1 := matrix{{a_0*x_0,a_1*x_2,a_2*x_1},{a_1*x_1,a_2*x_0,a_0*x_2},{a_2*x_2,a_0*x_1,a_1*x_0}}; | ||
M2 := matrix{{a_1*a_2*x_0^2-a_0^2*x_1*x_2,a_0*a_2*x_1^2-a_1^2*x_0*x_2,a_0*a_1*x_2^2-a_2^2*x_0*x_1}, | ||
{a_0*a_2*x_2^2-a_1^2*x_0*x_1,a_0*a_1*x_0^2-a_2^2*x_1*x_2,a_1*a_2*x_1^2-a_0^2*x_0*x_2}, | ||
{a_0*a_1*x_1^2-a_2^2*x_0*x_2,a_1*a_2*x_2^2-a_0^2*x_0*x_1,a_0*a_2*x_0^2-a_1^2*x_1*x_2}}; | ||
ZZdfactorization {M1,M2} | ||
) | ||
|
||
|
||
--constructs a rank 1, 2-generated maximal Cohen-Macaulay module based on | ||
--input parameters specified by a list, and the integer d specifies the characteristic. | ||
--if d is not specified the base field is chosen to be QQ | ||
rk1MCM2gen = method() | ||
rk1MCM2gen(List, ZZ) := ZZdFactorization => (L,d) -> (a := local a; | ||
b := local b; | ||
x := local x; | ||
Q := if d==0 then QQ[x_1..x_4,a,b] else ZZ/d[x_1..x_4,a,b]; | ||
an := (Q_*)_4; | ||
bn := (Q_*)_5; | ||
S := Q/(an^2-an+1,bn^2-bn+1); | ||
use S; | ||
(i,j,s) := toSequence L; | ||
M1 := matrix{{x_1-an*x_s,-(x_i^2+bn*x_i*x_j+bn^2*x_j^2)},{x_i-bn*x_j,x_1^2+an*x_1*x_s+an^2*x_s^2}}; | ||
M2 := matrix{{x_1^2+an*x_1*x_s+an^2*x_s^2,x_i^2+bn*x_i*x_j+bn^2*x_j^2},{-(x_i-bn*x_j),x_1-an*x_s}}; | ||
ZZdfactorization {M1,M2} | ||
) | ||
|
||
rk1MCM2gen(List) := ZZdFactorization => L -> rk1MCM2gen(L, 0) | ||
|
||
-* | ||
--need to fix this code | ||
rk1MCM3gen = method() | ||
rk1MCM3gen(ZZ,ZZ) := ZZdFactorization => (p,type) -> (a := local a; | ||
b := local b; | ||
c := local c; | ||
d := local d; | ||
e := local e; | ||
x := local x; | ||
Q := if p==0 then QQ[x_1..x_4,a,b,c,d,e,Degrees => {1,1,1,1,0,0,0,0,0}] else ZZ/p[x_1..x_4,a,b,c,d,e, Degrees => {1,1,1,1,0,0,0,0,0}]; | ||
an := (Q_*)_4; | ||
bn := (Q_*)_5; | ||
cn := (Q_*)_6; | ||
dn := (Q_*)_7; | ||
en := (Q_*)_8; | ||
S := Q/(an^2-an+1,bn^2-bn+1,cn^2-cn+1,dn^2-dn+1,en^2+en+1,bn*cn*dn-en*an); | ||
use S; | ||
M1 := local M1; | ||
M2 := local M2; | ||
if type==1 then ( | ||
M1 = matrix{{0,x_1-an*x_4,x_2-bn*x_3}, | ||
{x_1-cn*x_2,-bn^2*x_3-an*bn*cn^2*en^2*x_4,bn^2*cn^2*x_3-an*bn*cn*en^2*x_4}, | ||
{x_3-dn*x_4,cn^2*x_2+bn*cn^2*x_3+an*cn*x_4,-x_1-cn*x_2-an*x_4}}; | ||
M2 = transpose M1; | ||
return ZZdfactorization {M1,M2}; | ||
); | ||
if type==2 then ( | ||
M1 = matrix{{0,x_1+x_2,x_3-an*x_4}, | ||
{x_1+en*x_2,-x_3+cn*x_4,0}, | ||
{x_3-bn*x_4,0,-x_1-en^2*x_2}}; | ||
M2 = matrix{{0,x_1+x_3,x_2-an*x_4}, | ||
{x_1-an^2*bn*x_3,-x_2+cn*x_4,0}, | ||
{x_2-bn*x_4,0,-x_1+an*bn^2*x_3}}; | ||
return ZZdfactorization {M1,M2}; | ||
); | ||
) | ||
|
||
|
||
rk1MCM3gen(ZZ) := ZZdFactorization => type -> rk1MCM3gen(0, type) | ||
*- | ||
|
||
|
||
classicalAdjoint = (G) -> ( | ||
n := rank target G; | ||
m := rank source G; | ||
matrix table(n, n, (i, j) -> (-1)^(i+j) * det( | ||
submatrix(G, {0..j-1, j+1..n-1}, | ||
{0..i-1, i+1..m-1})))); | ||
|
||
--constructs factorizations of determinant of a matrix using the adjoint | ||
adjointFactorization = method() | ||
adjointFactorization(Matrix) := ZZdFactorization => M -> ( | ||
ZZdfactorization {M, classicalAdjoint M} | ||
) | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.